
 

mv.NET and REST 

 

                                                      
 

 

 

 

RESTful Service Developer Guide 
 

 

 

 

 

A product from BlueFinity 

  

 

  



Copyright Notices 

Copyright BlueFinity International 2009 onwards 

Document ref: mvNET_RS_DG 

Revision 4.5.0 

All rights reserved BlueFinity International 2012 onwards 

Contacting Us 

We are always very happy to be able to discuss all aspects of our products with our 

customers - prospective and current alike.  You can contact us via the following means: 

 

Website:  www.bluefinity.com 

Email:  support@bluefinity.com 

Address: 10260 SW Greenburg Road, Suite 700, Portland, OR 97223, USA 

Address: Hamilton House, 111 Marlowes, Hemel Hempstead, Herts, HP1 1BB, UK 

Trademark Acknowledgements 

The mv.NET product and logo are trademarks of BlueFinity International Limited. 

 

All other trademarks and trade names are the property of their respective owners and are 

used in this documentation for identification purposes only 

  



Contents 

mv.NET and REST 1 

Welcome to mv.NET 1 

The mv.NET Family of Products ....................................................................... 1 

Feature Overview ............................................................................................. 2 

The mv.NET Suite ............................................................................................ 2 

Developer Guide Contents ............................................................................... 2 

Assumptions ................................................................................................... 1 

REST Technical Overview 2 

REST Fundamentals ......................................................................................... 3 

Should I Use REST? .......................................................................................... 3 

mv.NET’s REST-based Functionality 4 

Entity Model Integration Overview ................................................................... 4 

Entity Model Integration Detail ........................................................................ 5 

Generating Entity Code ................................................................................... 5 

The Use of ASP.NET ......................................................................................... 5 

The REST Wizard ............................................................................................. 6 

Generating a New RESTful Visual Studio Solution ........................................ 6 

Updating a Previously Generated Visual Studio Solution ............................. 7 

Generating Client-side Code ...................................................................... 7 

The Anatomy of a RESTful Web Service 8 

Generated Solution Structure .......................................................................... 8 

Route Registration ...................................................................................... 8 

Controller Code .......................................................................................... 8 

Customizing/Extending Functionality ............................................................. 9 

Data Format .................................................................................................... 9 

Basic URI Composition .................................................................................. 10 

Accessing Multi and Sub Valued Data ............................................................ 10 

Selecting Items .............................................................................................. 11 

Complex Dynamic Selection Criteria Support ............................................ 11 

Tips and Recommendations .......................................................................... 12 

Object Nesting .......................................................................................... 12 



Date Handling ........................................................................................... 12 

 



mv.NET REST Developer Guide -  Welcome to mv.NET 

Page 1 

Welcome to mv.NET 

Firstly, thank you for either purchasing one or more of the mv.NET products or for 

taking the time to explore the great functionality that they can provide to you and 

your fellow developers. 

 

This chapter outlines the members of the mv.NET family of products and also 

summarizes the contents of this guide. 

The mv.NET Family of Products 

mv.NET is the essential tool for any MultiValue database developer wishing to 

create .NET based application interfaces to their current or new MultiValue 

database file system. 

 

The design goal of mv.NET is to enable the MultiValue developer to combine the 

power and flexibility of proven MultiValue technology with the state-of-the art, 

feature rich .NET environment.  Its design also enables and encourages the 

developer to leverage, wherever possible, previously acquired MultiValue skills. 

 

BlueFinity's team of software engineers has huge knowledge and experience of 

using both MultiValue systems and the .NET environment.  We proudly regard 

ourselves as being one of the foremost companies in providing this technology 

bridge and look forward to working with you to enable you to meet your software 

development goals. 

 



mv.NET REST Developer Guide -  Welcome to mv.NET 

Page 2 

Feature Overview 

The REST integration components that are supplied as part of the standard 

mv.NET product include: 

• Extensions to the Solution Objects entity modeling tool to allow the 

generated business access layer to be used inside a RESTful web 

service environment. 

• A “REST wizard” to allow quick creation of: 

▪ Visual Studio RESTful service solutions 

▪ Client-side data access code. 

 

Note, the RESTful services generated by mv.NET can be consumed by any type of 

client platform - .NET, Java, iOS, Android or any other of the many development 

environments able to execute standard HTTP requests. 

The mv.NET Suite 

The mv.NET suite of products comprises: 

 

• Core Objects - object oriented native .NET access to 

MultiValue databases. 

 

• Solution Objects - Strongly-typed class-based access to 

your MultiValue database. 

 

• Adapter Objects - complete implementation of an ADO.NET 

managed data provider for MultiValue databases, offering a 

standardized interface to database access. 

Developer Guide Contents 

The contents of this guide are designed to provide a basis for learning about how 

mv.NET can be used to create RESTful web service interfaces to your MultiValued 

database using Microsoft's ASP.NET environment.   



mv.NET Silverlight Developer Guide -  Welcome to mv.NET 

Page 1 

Assumptions 

This guide, through necessity, makes some assumptions about your skill level and 

software install base.  Specifically, it assumes that: 

 

1. You have already installed and configured mv.NET to connect into your 

database server.  Details on how to do this can be found in the accompanying 

Getting Started and Core Objects guides. 

2. You have created the necessary extended dictionary definitions for your data 

files.  Details on how to do this can be found in the accompanying Core 

Objects developer guide. 

3. You have created an entity model using the Solution Objects component of 

mv.NET.  Details on how to do this can be found in the accompanying Solution 

Objects developer guide. 

4. You have installed Microsoft Visual Studio 2010 or 2012 and that you are 

reasonably familiar with its layout and general functioning. 

  

 

 



mv.NET REST Developer Guide -  REST Technical Overview 

Page 2 

REST Technical Overview 

REST is an acronym with which most developers are now familiar.  It stands for 

REpresentational State Transfer and is an architectural methodology for 

structuring the invocation of remote functionality hosted by a “server” by an end 

“client”. 

As Wikipedia puts it “REST was initially described in the context of HTTP, but it is 

not limited to that protocol. RESTful architectures may be based on other 

Application Layer protocols if they already provide a rich and uniform vocabulary 

for applications based on the transfer of meaningful representational state. 

RESTful applications maximize the use of the existing, well-defined interface and 

other built-in capabilities provided by the chosen network protocol, and minimize 

the addition of new application-specific features on top of it.” 

Thus, REST in the context of this manual (as in most other contexts) refers to REST 

over HTTP using the standard HTTP verbs. 

There is a wealth of documentation on REST on the Web and thus this chapter 

provides a very brief overview of the technology in order to set the backdrop for 

the rest of this guide. 

An internet search on the phrase “RESTful web services” will produce many 

excellent links to more in depth discussions of the topic. 

 



mv.NET REST Developer Guide -  REST Technical Overview 

Page 3 

REST Fundamentals 

Put succinctly, the use of a RESTful style interface over HTTP means that the 

standard HTTP verbs are used to perform the action (and only the action) that each 

one was originally designed to do.  Looking at the 4 main verbs: 

• To create a resource on the server, use POST. 

• To retrieve a resource, use GET. 

• To change the state of a resource or to update it, use PUT. 

• To remove or delete a resource, use DELETE. 

A basic tenet of REST is that the same GET, DELETE and PUT action can be 

repeated multiple times with the same effect each time.  A POST should only be 

invoked once and may produce different (presumably undesirable) effects if so 

repeated. 

Should I Use REST? 

REST is not necessarily the right choice for all situations.  It has caught on as a 

way to design Web services with less dependence on proprietary middleware when 

compared with other alternatives such as SOAP. 

In many ways, REST is a return back to the original basic principles of the Web; a 

return back to how it was before the advent of the large application servers able to 

store/restore state across HTTP calls in a desire to ease the task of writing non-

trivial Web applications. 

Many people are now adopting the principle of REST being the default 

implementation pattern for a web service.  Only if there are overarching reasons 

for not using REST will other patterns be considered 

 

 

 



mv.NET REST Developer Guide -  mv.NET’s REST-based Functionality 

Page 4 

mv.NET’s REST-based 

Functionality 

mv.NET contains a number of aspects that are centered on the task of creating a 

RESTful web service.  This chapter takes you through each of these in turn. 

Entity Model Integration Overview 

mv.NET’s REST functionality is ultimately based upon “Entity Models” created using 

the product’s Solution Objects component. 

Thus, a prerequisite for using the REST-based functionality within mv.NET is that 

you must use mv.NET's Solution Objects component (hosted within the product’s 

Data Manager utility) to create an entity model of the data which you ultimately 

wish to expose via your RESTful web service.  If you already have an entity model, 

you are already in a position to quickly and easily create a RESTful service. 

If you are not familiar with mv.NET’s Solution Objects and its entity modeling 

features, please refer to the Solution Objects Developer Guide for more 

information. 

The ability to create custom projections of your entity model content through the 

use of multiple “Business Access Classes” (BACs) and “Business Access Layers” 

(BALs) within Solution Objects is a key aspect when looking at RESTful services.  

This is because the BACs and BALs provide a simple yet highly effective way to 

selectively isolate which parts of your database you wish to expose over a given 

RESTful service API.  



mv.NET REST Developer Guide -  mv.NET’s REST-based Functionality 

Page 5 

Entity Model Integration Detail 

Having got yourself familiar with Solution Objects and having created an entity 

model using the Data Manager, you are ready to use the REST-based features of 

mv.NET. 

The basic principle is that you should create a Business Access Layer dedicated to 

exposing the sections of your entity model (and only those sections) that are 

required for each of your web services.  You may well also want to create some 

additional Business Access Classes to restrict the properties supported by each 

entity included in your web service BAL. 

The Business Access Layer definition form within the Entity Modeling section of 

the Data Manager allows you to specify the target runtime environment.  You 

should select the “REST service” option.  Please refer to the Business Access Layer 

chapter of Solution Objects Developer Guide for more details on this topic. 

The “REST service” option will force the code generator to produce data access 

code that is capable of linking with a REST-based API. 

Generating Entity Code 

The entity modeling’s code generation form allows you to generate VB.NET or C# 

code based on one or more of your BALs. 

The code generator form also allows you to create a complete Visual Studio 

solution to host your generated code.  It is the assembly built from this generated 

code that will be referenced by your Visual Studio web service project in order to 

link your web service to your database server. 

Please refer to the Generating Code Modules chapter of Solution Objects 

Developer Guide for more details on this topic. 

The Use of ASP.NET 

The Visual Studio web service projects generated by the Data Manager are based 

on the standard ASP.NET MVC 3 project template, with all UI aspects removed. 

MVC is used because of its powerful yet simple to use ability to route incoming 

URIs to the appropriate service logic – which is arguably one of the most important 

fundamental requirements of a RESTful web service. 



mv.NET REST Developer Guide -  mv.NET’s REST-based Functionality 

Page 6 

There is, however, nothing to stop you from using a totally different approach to 

creating a .NET connected web service; in which case you will ultimately call into 

the relevant parts of the entity model data access assembly in exactly the same 

way as the ASP.NET MVC approach. 

The REST Wizard 

The top menu bar of the Data Manager contains a “REST Wizard” option which 

launches the screen responsible for allowing you to easily create ASP.NET-based 

RESTful web services. 

At the top of the REST Wizard form are 3 radio buttons which allow you to: 

• Generate a complete ASP.NET Visual Studio solution hosting a web service 

• Update a previous generated ASP.NET solution 

• Generate source code for use in various client-side environments 

Generating a New RESTful Visual Studio Solution 

Selecting this option results in the following being displayed: 

 

In this screen you are able to specify the name of your solution along with the 

location in which the top-level solution folder will be created.  You are also able to 

select the xml file generated by Visual Studio when you generated the data access 

assembly that you wish to use inside this web service. 

Additionally you are able to select the version of Visual Studio that you intend to 

use as well as your programming language of choice. 

On clicking the Create button the Visual Studio solution will be created and you 

will be offered the option of invoking Visual Studio on the newly generated 

solution. 



mv.NET REST Developer Guide -  mv.NET’s REST-based Functionality 

Page 7 

Updating a Previously Generated Visual Studio Solution 

If you add or remove entities from the entity model upon which your web service is 

based, you will need to regenerate the previously generated MVC controller code 

used within the Visual Studio project.  This option allows you to do this. 

Selecting the update option results in the following being displayed: 

 

This screen allows you to identify the location of your previously generated Visual 

Studio solution.  You may select an alternative data access xml file if necessary. 

Generating Client-side Code 

If you area creating a client application (consumer) of a RESTful web service in any 

of the environments listed in the left hand side of the panel displayed when this 

option is selected, you are able to generate the client-side class definition code 

based upon the underlying entity model: 

 

Once the Generate button has been clicked, the generated code will appear in the 

center of the form and you can then grab this content onto your clipboard by 

clicking the Copy to Clipboard button in the bottom right corner of the form. 

 

 

 



mv.NET REST Developer Guide - The Anatomy of a RESTful Web Service 

Page 8 

The Anatomy of a 

RESTful Web Service 

The Visual Studio solutions generated by the REST Wizard follow a predefined 

structure.  This chapter takes you through this structure and explains how you can 

safely customize or extend it as required. 

Generated Solution Structure 

The REST Wizard generates a Visual Studio solution based on the standard 

ASP.NET MVC 3 project template.  The UI related aspects of this template are 

removed to leave just the controller part of the project. 

The reason for using MVC is purely to take advantage of its excellent URI routing 

capabilities.  This allows an intuitive URI API syntax to be used to invoke the REST 

service functionality. 

Route Registration 

Within the Global.asax code file there is a MapRoute call within the RegisterRoutes 

subroutine.  This tells the MVC routing mechanism about the syntax of the REST 

service’s URI scheme.  The URI structure is covered in a later section in this 

chapter. 

Controller Code 

Initially in the Controllers folder of the project are 2 code files - APIController and 

APIControllerCustom.  These files contain the class definitions that will be used by 

the MVC URI routing mechanism and it is by the use of these classes that a 

connection to the entity model classes is established. 



mv.NET REST Developer Guide - The Anatomy of a RESTful Web Service 

Page 9 

The content of the APIController file is “owned” by the REST Wizard in that its 

entire content will be regenerated if you update the project (using the REST 

Wizard) at some future point in time. 

The content of the APIControllerCustom file is owned by you.  Its content (after 

initial creation) will not be altered by the REST Wizard’s code generator.  The 

purpose of the custom code file is discussed in the following section. 

The APIController code file contains one class per entity contained within the 

source Business Access Layer of the source entity model.  Each of these classes 

subclasses the MVC “Controller” class and contains a function method for each of 

the 4 HTTP verbs supported by the REST service (GET, PUT POST and DELETE).  

Each of the methods calls into the code generated by the Solution Objects code 

generator in order to interact with the back-end database. 

Customizing/Extending Functionality 

Each of the 4 “HTTP verb functions” in each of the classes within the APIController 

code file contains 2 lines of code, the first of which is a call into the 

APIControllerCustom code file. 

This structure allows you to pre-parse the incoming request in order to perform 

any checks, such as inspection of header information for security information.  For 

this reason the entire incoming request is passed into the custom routine. 

If you do not wish the request to be processed in the normal manner an exception 

should be thrown within the custom code routine. 

Data Format 

The code generated by REST Wizard is based around the creation of a REST service 

that supplies and receives data in JSON format.  This is fast becoming the de-facto 

standard for data interchange. 

If you do not wish to use JSON you can alter the REST Wizard’s code generator 

template to utilize a different serialization component (e.g. XML).  This template 

can be found in location: 

C:\Program Files (x86)\BlueFinity\mv.NET\Version4.0\Code Templates\Solutions\VS2012\C#{or 
VB}\REST Web Service\Controllers\ Controller Template.txt 



mv.NET REST Developer Guide - The Anatomy of a RESTful Web Service 

Page 10 

Basic URI Composition 

The line of code in the Global.asax code file which performs the MapRoute call 

within the RegisterRoutes subroutine is the place where the basic structure of the 

URI of the REST service is established. 

The default is based on the pattern of: 

http://{domain}/restapi/{entity} 

If you wish to use a different pattern, the MapRoute call can be changed as 

required. 

Accessing Multi and Sub Valued Data 

If nested data items are exposed by your entity model, you can read individual 

multivalue and subvalue positions via REST calls. 

For example, in the sample SOP database there is an entity called SalesOrderLine, 

this represents a multivalue associated group in the SALESORDER file. 

In order to retrieve a single SalesOrderLine instance, a URI of the form show below 

should be used: 

http://localhost/SOPData/restapi/SalesOrderLine/4?Line=2 

In this example the second order line of sales order 4 will be retrieved.  It can be 

seen that the required multivalue position is specified via a standard query string 

parameter in the URI.  The word “Line” has been used in the above example – 

although, in fact, any word could have been used, the important piece of data is 

that which appears after the equal sign.  Thus, the following URI would render the 

same result: 

http://localhost/SOPData/restapi/SalesOrderLine/4?row=2 

In order to retrieve an individual subvalue set of data using an entity that exposes 

a subvalue associated group, the same principle is used: 

http://localhost/SOPData/restapi/SalesDelivery/4?Line=1&Delivery=2 

In this example the second delivery of order line#1 of sales order 4 will be 

retrieved.  Again, the words “Line” and “Delivery” can be replaced with any word. 



mv.NET REST Developer Guide - The Anatomy of a RESTful Web Service 

Page 11 

Selecting Items 

As well as performing single record-based CRUD operations, the RESTful interface 

generated by mv.NET allows multiple records to be selected.  These selected 

records will be returned in the form of an array of JSON objects. 

The URI used for selecting multiple entity instances uses the collective name of the 

entity and also references the name of a selection method defined within your 

entity model.  For example: 

http://localhost/SOPData/restapi/SalesOrders/SelectByCustomer?Key=1 

In this example the SelectByCustomer selection method defined for the SalesOrder 

entity is being accessed.  Currently, only selection methods with a single argument 

can be accessed via the REST interface, although there are ways of allowing 

multiple selection details to be handled (see below). 

In the above example, the SelectByCustomer selection method accepts the item ID 

of the required customer (“Key=1”).  As in single record reading, the word 

preceding the equal sign is not relevant, only the value following the equal sign 

will be used.  Thus, the above URI will retrieve all sales orders for customer 1. 

Complex Dynamic Selection Criteria Support 

If you wish to provide a mechanism for consumers of your REST service to provide 

multiple (and possibly a variable number of) selection criteria elements via the URI, 

you will need to create a selection method with a single general purpose 

argument.  This argument is then used to pass a complete selection criteria clause 

into the selection process. 

Also, using the “BeforeSelection” method contained in the custom code file 

associated with the code generated from your entity model, you are able to parse 

the incoming selection criteria to ensure that any single request is not going to 

overload your database server with an overly large selection task. 

Using the above technique, it is easy to safely support URI’s of the kind: 

http://localhost/SOPData/restapi/SalesOrders?Customer EQ "1" And 
DatePlaced GT "1/1/2010" 



mv.NET REST Developer Guide - The Anatomy of a RESTful Web Service 

Page 12 

Tips and Recommendations 

This section contains a number of tips and recommendations for when you are 

creating a RESTful service. 

Object Nesting 

With REST, there is no such thing as “lazy data loading”.  This means that all of the 

data for a request will be assembled and delivered in a single logical roundtrip to 

the service. 

It is very common for entity model classes to contain properties that reference 

other entities.  This fact needs careful consideration in the context of a RESTful 

service, in that: 

• you need to ensure that there are no cyclic references via properties within 

your classes 

• you need to consider and control exactly how “deep” the recursive nature 

of data serialization goes when processing a request 

The good news here is that Solution Objects’ BAC and BAL give you all of the 

necessary control to make sure that the above 2 pitfalls are avoided. 

The main mechanism is the BAC.  This allows you to create custom projections of 

your entities specifically for your REST service and then within these custom 

projections allows you both omit object reference properties and also non-

required properties.  This, thus, allows you to avoid cyclic entity references and 

also to prevent unwanted related entity data to be inadvertently retrieved as part 

of a request. 

The BAL allows you to gather together these custom projections into a single 

assembly for use by the REST service  

Date Handling 

Unfortunately, there is currently no standard for how date values are serialized 

within a JSON payload.  Therefore, we recommend that you pass date values as 

strings in order to avoid parsing mismatches by the client and server JSON parsers. 

 


