

 mv.NET Adapter Objects

 Developer's Introductory Guide

 A product from BlueFinity

Copyright Notices

Copyright BlueFinity International 2004 onwards

Document ref: mvNET_AO_DI

Revision 4.5

All rights reserved BlueFinity International 2004 onwards

Contacting Us

We are always very happy to be able to discuss all aspects of our products with our customers -

prospective and current alike. You can contact us via the following means:

Website: www.bluefinity.com

Email: support@bluefinity.com

Address: 10260 SW Greenburg Road, Suite 700, Portland, OR 97223, USA

Address: Hamilton House, 111 Marlowes, Hemel Hempstead, Herts, HP1 1BB, UK

Trademark Acknowledgements

The mv.NET product and logo are trademarks of BlueFinity International Limited.

All other trademarks and trade names are the property of their respective owners and are used in

this documentation for identification purposes only

Contents

mv.NET Adapter Objects 1

Copyright Notices ... 2

Contacting Us.. 2

Trademark Acknowledgements ... 2

Welcome to mv.NET 1

The mv.NET Family of Products ... 1

Feature Overview ... 2

The mv.NET Suite .. 2

Getting Started Guide Contents ... 3

ADO.NET Basics 4

Installation .. 4

ADO.NET Architectural Summary ... 4

Connections ... 6

Commands ... 6

DataReaders ... 7

DataSets ... 7

DataAdapters .. 7

Adapter Objects Overview 8

Component Overview .. 8

ADO.NET Implementation .. 9

Visual Studio Integration ... 9

Important Prerequisites ... 9

Data Typing... 10

The mvConnection Class 11

Class Overview .. 11

mvConnection Members .. 11

ConnectionString Property .. 12

The mvCommand Class 14

Class Overview .. 14

mvCommand Members ... 14

CommandText Property .. 15

CommandText for 'Text' Types ... 15

Native CommandText Syntax .. 15

SQL CommandText Syntax.. 19

CommandText for 'StoredProcedure' Types ... 23

Filling DataSets using Stored Procedures .. 24

Filling DataSets using Stored Procedures which Supply Schema Data 25

CommandText for 'Table Direct' Types ... 27

Accessing Schema Information .. 27

Dynamic Normalization 28

The Need for Normalization .. 28

Dynamic Normalization Overview .. 28

The Use of Extended Dictionary Data .. 29

File Properties ... 29

Dictionary Schema .. 30

Using Dynamic Normalization ... 30

Exploding and Filtering Multivalued Data .. 31

Updating Data 32

The Update Options Available ... 32

Updating via the mvDataAdapter.Update Method .. 32

Creating an Update Command Object ... 33

The mvDataAdapter.GenerateCommands Method ... 34

Using a Manually Created Update Command ... 34

Scenario 1: Multivalued data update within a normalized DataSet 35

Scenario 2: Singular data update within a DataSet 35

Scenario 3: Multivalued data update via ExecuteNonQuery 35

Scenario 4: Singular data update via ExecuteNonQuery 35

Multiple Commands 36

Defining Multiple Commands .. 36

Select Command Execution ... 36

Update Processing ... 36

The Data Adapter Definition Wizard 37

Invoking the Wizard .. 37

Wizard Steps ... 38

Step 1 : Define your data source ... 38

Step 2 : Define your selection command(s) ... 38

Sample Application 39

frmWizard ... 39

frmStandalone ... 40

mv.NET Adapter Objects Developer's Introductory Guide - Welcome to mv.NET

Page 1

Welcome to mv.NET

Firstly, thank you for either purchasing one or more of the mv.NET products, or for

taking the time to explore the great functionality that they can provide to you and

your fellow developers.

This chapter outlines the members of the mv.NET family of products and also

summarizes the contents of this guide.

The mv.NET Family of Products

Adapter Objects is one of the members of the mv.NET family of products authored

by BlueFinity. mv.NET is the essential tool for any multivalued database developer

wishing to create .NET based application interfaces to their current or new

multivalue database file system.

The design goal of mv.NET is to enable the multivalued developer to combine the

power and flexibility of proven multivalued technology with the state-of-the art,

feature rich .NET environment. Its design also enables and encourages the

developer to leverage, wherever possible, previously acquired multivalue skills.

BlueFinity's team of software engineers has huge knowledge and experience of

using both multivalue systems and the .NET environment. We proudly regard

ourselves as being one of the foremost companies in providing this technology

bridge and look forward to working with you to enable you to meet your software

development goals.

mv.NET Adapter Objects Developer's Introductory Guide - Welcome to mv.NET

Page 2

Feature Overview

The Adapter Objects product provides a sophisticated implementation of the

ADO.NET managed data provider model, along with Visual Studio integration

components to assist the developer in using the data provider within the VS.NET

IDE.

The Adapter Objects architecture has been designed with both performance and

flexibility in mind. This, combined with an implementation that provides seamless

integration with the .NET environment, provides a powerful tool for enabling

developers to harness the full power of both their MultiValued system and the

.NET platform.

The product's key features are as follows:

• 100% implementation of the ADO.NET managed data

provider model.

• Visual Studio integration components, such as creation

wizards and XML schema generation.

• Support for optimistic locking and transaction boundaries.

The mv.NET Suite

Adapter Objects is one of three products within the mv.NET suite; the suite

comprising of:

• Core Objects - object oriented native .NET access to

MultiValued databases.

• Binding Objects - high performance databinding

technology that enables standard .NET controls to become

fully MultiValued-aware. Binding Objects links with Core

Objects to provide its functionality.

• Adapter Objects - complete implementation of an ADO.NET

managed data provider for multivalue databases, offering a

standardized interface to database access.

mv.NET Adapter Objects Developer's Introductory Guide - Welcome to mv.NET

Page 3

Getting Started Guide Contents

The contents of this guide are designed to provide a basis for learning about the

Adapter Objects module. Further help is provided within the Visual Studio

environment using the product’s dynamic and Intellisense help systems. The

chapters of this guide are as follows:

ADO.NET Basics

This chapter explores the basics of the ADO.NET data access architecture. It also

contains links to other general information sources.

Adapter Objects Overview

This chapter provides an overview of the components that comprise the Adapter

Objects package.

The mvConnection Class

The mvConnection class is responsible for establishing and holding a connection

to a multivalued database. This chapter covers the Adapter Objects specific

implementation of this class.

The mvCommand Class

The mvCommand class is responsible for holding the definition of a range of

possible database manipulation commands. This chapter details the aspects of

the class that are peculiar to the Adapter Objects implementation of the Command

class.

Dynamic Normalization

This chapter outlines the Dynamic Normalization technology incorporated within

Adapter Objects which addresses the problem of how to transform multi and

subvalued data into ADO.NET data structures.

Multiple Commands

The mvCommand object allows you to define multiple commands to be performed

in unison. This chapter explains this process and explores the implications of

doing so.

The Data Adapter Definition Wizard

This chapter describes the wizard which is invoked when you drag and drop an

mvDataAdapter control onto the surface of a form within Visual Studio.

mv.NET Adapter Objects Developer's Introductory Guide - ADO.NET Basics

Page 4

ADO.NET Basics

ADO.NET is the standard method by which .NET developers can interact with

databases. It comprises a large suite of class definitions which, collectively,

provide a rich environment for database access and manipulation. This chapter

explores some of the key aspects of the ADO.NET model and provides links to

sources of further information.

Installation

Adapter Objects is installed as part of mv.NET's Client Interface Developer setup

routine. Please refer to the Getting Started and Core Objects guides for further

information on this topic.

ADO.NET Architectural Summary

ADO.NET has a relatively complex architecture and it is beyond the scope of this

manual to document all aspects of this technology. However, below is a diagram

which summarizes the way in which ADO.NET's architecture is structured.

mv.NET Adapter Objects Developer's Introductory Guide - ADO.NET Basics

Page 5

Diagram 1 : The ADO.NET Architecture

ADO.NET is an evolution of Microsoft’s previous ADO data access model. ADO.NET

uses some previous ADO class names, such as the Connection and Command, but

also introduces many new classes, the key ones being the DataSet, DataReader,

and DataAdapter.

The key difference between ADO.NET and previous Microsoft data architectures is

the existence of the 'DataSet' class. This class introduces the concept of a

separate and distinct level of data repository from the source data store

(database). Because of this, the DataSet functions as a standalone entity and may

thus be regarded as an always disconnected recordset with no knowledge of the

source or eventual destination of the data it contains

The DataSet is comprised of entities which mimic the traditional database

paradigm, containing such things as tables, columns, relationships, constraints

and views.

A key concept within ADO.NET is that of the 'DataAdapter' class connecting to the

database to fill the DataSet with data. Upon data update, it can then connect back

to the database to persist the updates.

Historically, data maintenance has been primarily connection-based. However, in

an attempt to make multi-tiered apps more efficient, data processing is favoring a

.NET Managed Data Provider

Connection

Transaction

Parameter(s)

Command

DataReader

DataAdapter

Select Command

Update Command

Delete Command

Insert Command

DataSet

DataTable(s)

DataTable

DataRow(s)

DataColumn(s)

Constraint(s)

DataRelation(s)

Database

XML

mv.NET Adapter Objects Developer's Introductory Guide - ADO.NET Basics

Page 6

message-based approach revolving around the exchange of chunks of

information.

The DataAdapter lies at the heart of this approach, providing a bridge to retrieve

and save data between a DataSet and its source data store. It accomplishes this

using various 'Command' objects, each of which being configured by the

developer to contain the requisite database manipulation commands in order to

interact with the data store in the desired manner.

The DataSet is engineered heavily around the storage of data in XML format,

providing a consistent programming model able to work with broad range of data

storage products: flat, relational, and hierarchical. It does this by not recording

any information relating to the source of its data, and by representing the data

that it holds as collections and data types. Irrespective of the actual source of the

data within the DataSet, its contents are manipulated through the same set of

standard APIs exposed through the DataSet and its subordinate objects.

While the DataSet has no knowledge of the source of its data, ADO.NET revolves

around the concept of a 'managed data provider', which, conversely, has very

detailed and specific information relating to the data source. The role of the

managed data provider is to connect, fill, and persist the DataSet content to and

from data stores. The concept of a managed data provider manifests itself as a

series of interfaces; these interfaces need to be implemented by a developer in

order to provide the database specific logic which ultimately allows the database

neutral functionality of the DataSet to be connected to a specific data store in

order to provide data persistence.

Thus, in summary, ADO.NET consists of the following conceptual objects, the

implementation of which is provided partly generically by the .NET framework and

partly by the database vendor/integrator.

Connections
Connections are used to 'talk to' databases and are represented by provider-

specific classes such as mvConnection in the case of mv.NET. Connections can be

opened explicitly by calling the Open method of the connection, or will be opened

implicitly when using a DataAdapter

Commands
Commands contain the information that is submitted to a database and are

represented by provider-specific classes such as mvCommand. A command can

be a stored procedure call, a database DML statement, or a statement that returns

mv.NET Adapter Objects Developer's Introductory Guide - ADO.NET Basics

Page 7

results. You can also use input and output parameters and return values as part

of your command syntax. Commands travel over connections and resultsets are

returned in the form of streams which can be read by a DataReader object or

pushed into a DataSet object.

DataReaders
The DataReader object is somewhat synonymous with a traditional read-

only/forward-only cursor over data. The DataReader API supports flat as well as

hierarchical data. A DataReader object is returned after executing a command

against a database.

DataSets
The DataSet object represents a cache of data, with database-like structures such

as tables, columns, relationships, and constraints. However, though a DataSet can

and does behave much like a database, it is important to remember that DataSet

objects do not interact directly with databases, or other source data. This allows

the developer to work with a programming model that is always consistent,

regardless of where the source data resides.

DataAdapters
The DataAdapter object works as a bridge between the DataSet and the source of

data, pulling data into the DataSet, and reconciling (pushing) data back into the

database.

The DataAdapter object uses commands to update the data source after changes

have been made to the DataSet. Using the 'Fill' method of the DataAdapter calls

the SELECT command; using the 'Update' method calls the INSERT, UPDATE or

DELETE command for each changed row. You can explicitly set these commands

to control the statements used at runtime to resolve changes, including the use of

stored procedures.

The following URL (at the time of writing this document) contains further

information on the ADO.NET architecture:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconoverviewofadonet.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconoverviewofadonet.asp

mv.NET Adapter Objects Developer's Introductory Guide - Adapter Objects Overview

Page 8

Adapter Objects

Overview

mv.NET's Adapter Objects product provides the developer with a range of

components designed to allow efficient ADO.NET based access to multivalued

databases. This chapter outlines the major aspects of Adapter Objects.

Component Overview

To provide a comprehensive ADO.NET solution, Adapter Objects provides the

following 2 groups of components:

• Multivalued database specific Implementations of the ADO.NET

classes/interfaces

• Visual Studio.NET addin components to aid developer productivity in the

use of Adapter Objects

mv.NET Adapter Objects Developer's Introductory Guide - Adapter Objects Overview

Page 9

ADO.NET Implementation

To present a multivalued oriented ADO.NET managed data provider, Adapter

Objects provides the developer with the following mv.NET specific classes, most of

which inherit from the corresponding .NET framework IDbxxx interface:

mvCommand

mvConnection

mvConnectionString

mvDataAdapter

mvDataReader

mvParameter

mvParameterCollection

mvTransaction

Visual Studio Integration

To ease the use of Adapter Objects within the Visual Studio IDE, Adapter Objects

provides a range of VS.NET extensions which are used in various places within the

IDE:

• mvDataAdapter creation wizard – invoked when an mvDataAdapter is

dropped onto a form or when an existing mvDataAdapter is reconfigured.

• DataSet schema generation – invoked when the Generate Typed DataSet

option within the Properties window is clicked.

• Customer property designers for a range of class properties.

Important Prerequisites

To use Adapter Objects, the developer MUST be familiar with the concepts intrinsic

with the ADO.NET model. It is, therefore, strongly recommended that developers

new to ADO.NET do some background reading on the subject matter prior to their

use of Adapter Objects. MSDN is a good starting point for this research.

Also, for Adapter Objects to correctly interact with multivalued data, extended

dictionary information for each field being accessed via Adapter Objects must be

mv.NET Adapter Objects Developer's Introductory Guide - Adapter Objects Overview

Page 10

created along with the creation of general file properties. Please refer to the

Dynamic Normalization chapter for more details on this topic.

Data Typing

ADO.NET, and more specifically, DataRow values are strongly typed data

containers. This is in sharp contrast to the somewhat relaxed attitude that

MultiValued databases take to data storage.

The consequence of this difference in approach is that you need to make sure that

the data which you are requesting to be held within ADO.NET conforms to the data

type specification within the extended dictionary definition.

Where a field holds a blank (empty string) value within the MultiValued database,

this will be represented by a <null> value within the DataRow, unless the field is

defined as Alphanumeric, in which case a blank string value will be used.

Adapter Objects does incorporate code which attempts to coerce numeric data

into strict numeric representation, but this will result in invalid fields being

represented by a value of zero.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 11

The mvConnection Class

The mvConnection class is responsible for establishing and holding a connection

to a multivalued database. This chapter covers the Adapter Objects specific

implementation of this class.

Class Overview

ADO.NET works primarily on the principle of only acquiring physical connections

to the database when data transfer is actually required. Therefore, the primary

purpose of the mvConnection class is to make connections to multivalued

database available to ADO.NET at the time when it requires them.

The mvConnection class utilizes the functionality of mv.NET's Core Objects

package to acquire database connections thereby allowing it to leverage Core

Objects' implicit connection pooling capabilities.

The mvConnection class implements the IDbConnection interface. Please refer to

the MSDN documentation for further information on the architecture of this

interface.

mvConnection Members

The table below lists the members of the mvConnection interface that are peculiar

to Adapter Objects. More detailed documentation can be found in the on-line

help integrated within Visual Studio.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 12

Name Description

mvConnection Constructor : The constructor of the mvConnection class

allows a connection string to be passed into the object.

Please see ConnectionString section below for more

details.

Account Property : Returns a reference to the

CoreObjects.mvAccount instance used internally by this

class. This reference will only be available after the class'

Open method has been invoked.

Close Method : Forces the Logout method of the internal

mvAccount instance to be invoked and sets the

ConnectionState property of the object to Closed.

ConnectionString Property : This property allows you to specify the database

into which to object is to connect. Please refer to the

following section for details on the required format of this

property.

Open Method : Allows a connection to the specified database to

be established. Internally, the mvCommand object

establishes a CoreObjects.mvAccount instance. An

exception will be raised if the ConnectionString property

contains an invalid format or if the Open request fails.

Upon successful open the ConnectionState property of the

mvConnection object is set to Open.

Transaction Property : Allows an mvTransaction object to be assigned

to this connection.

ConnectionString Property

The ConnectionString property of the mvConnection class allows you to specify

the database into which the object is to establish a connection. It should be of

one of the following 2 formats:

Login=lpn;user=un;password=pw

Or

Server=spn;Account=apn;user=un;password=pw

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 13

The first format (which is the recommended format) allows you to specify the

name of a login profile within the mv.NET's configuration database to indicate

which database is to be connected into. Please refer to the Core Objects guide for

further details on the topic of manipulating the configuration database. The user

and password settings are optional and only need supplying if the server profile

referenced by the specified login profile requires a user name or password to be

supplied which is not supplied by the associated account profile.

The second format allows you to specify the server and account profile directly.

Again, as with the first format, the user and password settings are optional.

There are 2 additional elements that may be included within the connection string:

ConfigDBLocation=path

This allows the location of the configuration database to be specified. The value

of path should be the fully qualified path (URN) of the folder which contains the

CONFIGURATION folder

Gateway=url

This allows the location of the required gateway service to be specified. Please

refer to the Gateways chapter of the Core Objects guide for further details on

Gateways.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 14

The mvCommand Class

The mvCommand class is responsible for holding the definition of a range of

possible database manipulation commands. This chapter details the aspects of

the class that are peculiar to the Adapter Objects implementation of the Command

class.

Class Overview

In order to provide a database neutral data access paradigm, the ADO.NET

architecture abstracts all database platform specific details (in terms of data

retrieval and manipulation) into the Command class. In Adapter Objects, this is

represented by the mvCommand class.

The mvCommand class implements the IDbCommand interface. Please refer to

the MSDN documentation for further information on the architecture of this

interface.

mvCommand Members

The table below lists the members of the mvCommand interface that are peculiar

to Adapter Objects. More detailed documentation can be found in the on-line

help integrated within Visual Studio.

Name Description

mvConnection Constructor : The constructor of the mvCommand class

allows an mvConnection instance to be passed into the

object.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 15

CommandText Property : Holds the syntax of the database command

associated with the object. See following section for more

details on the supported syntax for this property.

CommandType Property: Indicates the general type of the command.

CommandText Property

The contents of the CommandText property will vary according to the setting of

the CommandType property and the context in which it is being used.

CommandText for 'Text' Types

For a CommandType property setting of Text, the CommandText property needs

to hold the syntax of the command to be run against the associated database. In

this situation, the usage context will be one of:

Select command

Update command

Insert command

Delete command

Adapter Objects supports 2 different styles of syntax for CommandText

commands: a proprietary mv.NET syntax (termed 'native' syntax) and standard

ANSI SQL syntax (termed 'SQL' syntax).

The native syntax is described first followed by the SQL syntax equivalent.

Native CommandText Syntax
For each of the above commands, the CommandText property needs to be set to a

semicolon separated list of 'command segments'.

Select Command

For Select commands, the CommandText native syntax is as follows:

Select;File=fn;Criteria=sel;Sort=srt;Fields=fld

or

Select;File=fn;ID=id;Fields=fld

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 16

For example:

Select;File=SALESORDER;Criteria=CUSTOMER < "10";Fields=NUMBER

CUSTOMER CUSTOMERNAME PRODUCT DELIVERYQTY DELIVERYDATE;Sort=BY

NUMBER

Where:

fn represents the name of the file from which to select items

sel represents a multivalue format selection clause, e.g. CUSTOMER = "850"

srt represents a multivalue format sort clause, e.g. BY CUSTOMERNAME

id represents an attribute mark, char(254), delimited list of item IDs

fld represents a space separated list of the required field (dictionary) names

The select command may also have the segments ;Normalized or ;MVFilter

appended to it in order to control dynamic data normalization and multivalued

data filtering (respectively). Please refer to the Dynamic Normalization chapter for

further details on these topics.

For TableDirect command types only, you may control how multivalue and

subvalue marks are handled when data is extracted using 2 extra segments in the

select command:

;ReplaceVM=vmrepl;ReplaceSVM=svmrepl

Where vmrepl represents the character string to replace multivalue marks and

svmrepl represents the character string to replace subvalue marks. If you wish to

use control characters in the replacement string, you should use the following

format:

~c1~c2...

Where c1 is the ASCII value of the first required character, c2 is the second, etc.

You may concatenate as many ~n characters as required. For example:

ReplaceVM=~13~10

indicates that each multivalue mark is to be replaced by a carriage return line feed

character pairing.

If you wish to use a semicolon within the replacement string, you should use /; to

indicate this, for example:

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 17

ReplaceSVM=/;

indicates that each subvalue mark is to be replaced by a semicolon character.

Within the Criteria and Sort segments of the select command you may specify run-

time parameters as follows:

Criteria=CUSTOMER = "{CUSTOMER}"

In the above example, {CUSTOMER} denotes a parameter called 'CUSTOMER' that

will require an mvParameter instance creating within the command object's

parameter collection. Note, if you use the Data Adapter creation wizard this will

be done automatically for you. See the Data Adapter Wizard chapter for more

details.

The final segment which may be included within the Select command is the

;AutoLink segment. If present, this indicates that for select commands which, in

fact, contain multiple selection commands, if any of the files referenced in the set

of selection commands contain foreign key links to one another, relationship

information will be automatically created within a host DataSet. See the Multiple

Commands chapter for more details.

Update Command

For Update commands, the CommandText native syntax is as follows:

Update;File=fn;ID=id;Set=fld To val;UpdateControl=uc

Where:

fn represents the name of the file which is to be updated

id represents the ID of the item which is to be updated

fld and val represent a field name and value pairing indicating how a specific

field is to be updated - see below for more details.

uc represents a space separated list of field names that control how optimistic

lock control is to be managed – see below for more details.

The ID segment will typically reference a run-time parameter which is mapped to

the column holding the item ID. For example:

ID={Product ID}

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 18

The Set segment(s) of the update command allows you to specify how one or more

fields are to be updated. Multiple Set segments can be included as necessary and,

typically, the value portion will be a run-time parameter. For example:

Set=TYPE To C;Set NAME To {NAME}

The above set segments indicate that the TYPE field is to be set to a value of 'C'

and that the value of the NAME field is to be set to the value of parameter 'NAME'.

If you need to include a semicolon within the value portion you should use the

string "/;" to do so.

The update control segment of the update command takes the form of a space

separated list of field names. The presence of a field name in this list indicates

that the value of this field will participate in the optimistic lock checking process

which is automatically performed by Adapter Objects to coordinate multi-user

access to the database. There are 2 things to note with update control segments:

1. If the command object is associated with a DataAdapter, each field within the

update control segment must also have been included in the Fields segment of

the select command which initially populated the DataTable. This is because

the update control process needs access to the original values of the fields it is

checking for optimistic lock control - these original values will only available if

the field has been retrieved as part of the Fields segment.

2. There must be an mvParameter object (within the command) for each field

within the update control segment. Each of these parameter objects must

have a name of field.Orig, where field is the name of the update control

segment field name. It is the value of these parameters which are used to

supply the original values of the fields specified within the update control

segment. These original values are used in the optimistic lock checking

process – see below. If the command object has been created using the Data

Adapter wizard or the mvDataAdapter.GenerateCommnds method, these

parameter objects will have been created automatically.

Optimistic locking works using the following mechanism: at the point of update,

the original value of an amended update control field is passed to the database

server along with the desired new value. If the original value is the same as the

current database value, the update can continue, otherwise it is blocked.

The update control segment thus allows you to restrict the optimistic lock

checking to only the relevant fields within the update set.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 19

The update command may also contain a Normalized segment and

multivalued/subvalue replacement segments to control the handling of

multivalued and subvalued data. See Select Command above for details on these 2

command segments.

Please refer to chapter 'Updating Data' for detailed notes on using the

UpdateCommand object.

Insert Command

For Insert commands, the CommandText native syntax is as follows:

Insert;File=fn;ID=id;Set=fld To val

Please refer the Update Command above for details on the insert command

segments. As per the Update command, the Normalized and

multivalued/subvalue replacement segments can also be included with the Insert

command text.

Delete Command

For Delete commands, the native syntax is as follows:

Delete;File=fn;ID=id;UpdateControl=uc

Please refer the Update Command above for details on the delete command

segments. The Delete command does not use Normalized and

multivalued/subvalue replacement segments.

SQL CommandText Syntax
Adapter Objects supports a subset and extended form of the ANSI SQL syntax

definition. The syntax supported for each of the 4 command types are detailed

below.

Select Command

For Select commands, the CommandText SQL syntax is as follows:

SELECT fld FROM fn [WHERE sel] [ORDER BY srt [DESC]] [NORMALIZED]

[REPLACEVM 'rvm'] [REPLACESVM 'rsvm'] [MVFILTER]

(clauses contained within square brackets are optional)

Please refer to the Dynamic Normalization chapter for further details on the

NORMALIZED and MVFILTER keywords.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 20

For example:

SELECT NUMBER, CUSTOMER, CUSTOMERNAME, PRODUCT, DELIVERYQTY,

DELIVERYDATE FROM SALESORDER WHERE CUSTOMER < 10 ORDER BY NUMBER

Where:

fld represents a comma separated list of the required field (dictionary) names

fn represents the name of the file from which to select items

sel represents a selection clause, e.g. CUSTOMER = "850"

srt represents a sort clause, e.g. ORDER BY CUSTOMERNAME.

rvm represents the character string to replace multivalue marks when a command

type of TableDirect is used.

rsvm represents the character string to replace subvalue marks when a command

type of TableDirect is used.

For rvm and rsvm if you wish to use control characters in the replacement string,

you should use the following format:

~c1~c2...

Where c1 is the ASCII value of the first required character, c2 is the second, etc.

You may concatenate as many ~n characters as required. For example:

ReplaceVM '~13~10'

indicates that each multivalue mark is to be replaced by a carriage return line feed

character pairing.

Within the sel (Criteria) and srt (Sort) segments of the select command you may

specify run-time parameters as follows:

WHERE CUSTOMER = "{CUSTOMER}"

In the above example, {CUSTOMER} denotes a parameter called 'CUSTOMER' that

will require an mvParameter instance creating within the command object's

parameter collection. Note, if you use the Data Adapter creation wizard this will

be done automatically for you. See the Data Adapter Wizard chapter for more

details.

Select Command Syntax Restrictions

The SQL syntax support is a subset of the full ANSI standard. The following notes

detail the supported constructs.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 21

1. Multiple tables

Adapter Objects only supports direct retrieval from a single table (file). It is

assumed that any data joining will be performed via dictionary definitions within

the specified file.

2. Selection criteria

The following operators are supported:

NOT AND OR = > >= <= LIKE IN

AND and OR operators may not be both present within in the same select

command, nor may IN and OR operators. Only one IN clause may be present.

Update Command

For Update commands, the CommandText SQL syntax is as follows:

UPDATE fn SET fldval WHERE upd [NORMALIZED] [REPLACEVM 'rvm']

[REPLACESVM 'rsvm']

(clauses contained within square brackets are optional)

For example:

UPDATE SALESORDER SET DATEPLACED = {DATEPLACED} WHERE NUMBER =

{NUMBER} AND DATEPLACED = {DATEPLACED.Orig}

Where:

fn represents the name of the file from which to select items

fldval represents a series of set clauses

upd represents a series of optimistic lock control conditions

rvm represents the character string to be replaced by a multivalue mark when a

command type of TableDirect is used.

rsvm represents the character string to be replaced by a subvalue mark when a

command type of TableDirect is used.

For rvm and rsvm if you wish to use control characters in the replacement string,

you should use the following format:

~c1~c2...

Where c1 is the ASCII value of the first required character, c2 is the second, etc.

You may concatenate as many ~n characters as required. For example:

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 22

REPLACEVM '~13~10'

indicates that each occurrence of a carriage return line feed character pairing is to

be replaced by a single multivalue mark.

Within the upd segment of the update command you may specify run-time

parameters as follows:

NAME = "{NAME.Orig}"

In the above example, {NAME} denotes a parameter called 'NAME' that will require

an mvParameter instance creating within the command object's parameter

collection. Note, if you use the Data Adapter creation wizard this will be done

automatically for you. See the Data Adapter Wizard chapter for more details.

Update Command Syntax Restrictions

The SQL syntax support is a subset of the full ANSI standard. The following notes

detail the supported constructs.

1. WHERE clause structure

The WHERE clause within an update command must adhere to the following rules:

a) The first condition must reference a dictionary name representing the item ID

field. It is the first condition within the WHERE clause that identifies the item

to be updated.

b) Second and subsequent fields allow optimistic locking criteria to be specified.

c) Second and subsequent conditions must reference non-item ID field names.

d) Second and subsequent conditions must only use the "=" operator.

e) The value part of the second and subsequent conditions must reference either

a literal value or a parameter name. If a parameter name is referenced it must

be of the format {name.Orig} where name is the field name, e.g:

 NAME = '{NAME.Orig}'

Please refer to chapter 'Updating Data' for detailed notes on using the

UpdateCommand object.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 23

CommandText for 'StoredProcedure' Types

For a CommandType property setting of StoredProcedure, the CommandText

needs to hold the name of the DataBASIC subroutine to be called on the server.

If you wish to pass/receive data to/from the subroutine via arguments, you need

to add the relevant number of mvParameter objects to the mvCommand's

Parameters collection – one mvParameter for each argument that the subroutine

will expect to be passed in. The SourceColumn of each mvParameter should be

set to the logical position (as specified in the subroutine's first line of code) of the

argument it represents. The name of the mvParameter is not significant but we

recommend that you set it to the same name as the variable defined in the

subroutine's declaration statement to aid clarity.

For example, the VB code below calls a cataloged subroutine called

END.OF.MONTH, passing in 3 arguments and retrieving information returned by

the subroutine in the 3rd argument.

Dim myCommand As New mvCommand("END.OF.MONTH", myConnection)

myCommand.Parameters.Add(New mvParameter("YEAR", DbType.String, "1"))

CType(myCommand.Parameters("YEAR"), mvParameter).Value = txtArg1.Text

myCommand.Parameters.Add(New mvParameter("MONTH", DbType.String, "2"))

CType(myCommand.Parameters("MONTH"), mvParameter).Value = txtArg2.Text

myCommand.Parameters.Add(New mvParameter("STATUS", DbType.String, "3"))

myCommand.CommandTimeout = 300 ' so we can debug

myCommand.ExecuteNonQuery()

txtArg3.Text = CType(myCommand.Parameters("STATUS"), mvParameter).Value

 Note, AdapterObjects automatically treats parameters used in this way as

InputOutput parameter types.

Also note that if the subroutine can potentially take a significant amount of time

to execute, you will need to set the CommandTimeout property of the

mvCommand object to the maximum period of time in seconds that the

subroutine may take to complete. If you wish to debug the subroutine via the

Connection Window, you will also need to extend the CommandTimeout property

to allow your debugging work to be completed.

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 24

Filling DataSets using Stored Procedures
For situations where a stored procedure (DataBASIC subroutine) is required to

generate (or fill) a DataSet, the following programming pattern should be used.

If you use a StoredProcedure command type object as the SelectCommand object

of an mvDataAdapter, the Fill method will invoke the specified databasic

subroutine and expect the results to be returned in a set argument number in a

set format.

Specifically, the CommandText property of such a command object must be of the

format:

subname;File=file name;Fields=field list;Criteria=criteria;Sort=sort;

Normalized

Where:

subname is the name of the subroutine to be called

file name is the name of the file whose dictionary holds dictionary items as

specified by the Fields clause

field list is the (space delimited) list of dictionary item names defining the order of

data organisation (and data typing) within the returned data

criteria is the (optional) selection criteria (this is free-text and may, actually, be set

to anything useful to the called subroutine)

sort is the (optional) sort definition (this is free text as above)

Normalized (if present) indicates that multi/subvalued data is to split into separate

DataTables

Note, the file and field list segments do not define where the data is to be drawn

from, that is for the subroutine to decide. They are only used, in this context, to

define where dictionary items are to be found. These dictionary items are used to

control the creation of the resulting DataTable object(s).

The subroutine specified within the CommandText must have 6 arguments

defined in its calling signature:

arg#1 - (input) the name of the file; i.e. file name in the CommandText

arg#2 - (input) the required fields; i.e. field list in the CommandText (but please

note that this is a VM delimited list)

arg#3 - (input) the required select criteria; i.e. criteria in the CommandText

arg#4 - (input) the required sort criteria; i.e. sort in the CommandText

arg#5 – (output) the returned data

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 25

arg#6 – (output) (optional) error message text - non-blank indicates an error

The structure of the returned arg#5 should be as follows:

item sep item sep ...

That is, a series of item strings concatenated together with a char(30) separating

each one. The content of each item string must be the value of each field

specified with the CommandText's field list segment with each value occupying

one attribute position. The entire item string should also have the relevant item

ID (or unique string) concatenated at the front as the first attribute irrespective of

whether the item ID is specified as one of the required fields or not. For example:

"1":CHAR(254):"Test 1":CHAR(30):"2":CHAR(254):"Test 2"

The above return value returns one field value for item IDs "1" and "2".

Filling DataSets using Stored Procedures which Supply

Schema Data
For situations where the developer needs to be shielded from all aspects of data

retrieval (including the names of files and fields), there is an alternative

CommandText syntax to the above stored procedure calling mechanism:

subname;Context=some user data;Normalized

As with the previously discussed syntax for a stored procedure call, the

'Normalized' keyword is optional and indicates (if present) that multi/subvalued

data is to split into separate DataTables

The “Context” keyword indicates that the subroutine will be called in 2 different

modes; a schema retrieval mode and a data retrieval mode. The string supplied

with the Context keyword can be anything which allows the subroutine to uniquely

identify the given context in which it being called, for example a record ID or

functional area. mv.NET will decide when and in which mode the subroutine is

called. The mode can be detected by the contents of the subroutine’s first

argument which will be set to either "Get schema" or "Get data". The signature of

the subroutine should still support 6 arguments as above. When the subroutine is

called in a data retrieval mode, the use of these 6 arguments is the same as above,

but when called in a schema retrieval mode, the use of these 6 arguments is as

follows:

arg#1 - (input) contains the string “Get schema”

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 26

arg#2 - (input) the context as supplied in the CommandText property

arg#3 - (input) empty string (not used)

arg#4 - (output) the name of the file being used (the dictionary of which holds the schema)

arg#5 – (output) the space separated list of required field (column) names

arg#6 – (output) (optional) error message text - non-blank indicates an error

NOTE: when using this stored procedure calling syntax, an mvConnection

instance must be passed into the mvCommand constructor. If an mvConnection is

not available at the time of mvCommand construction, an extra segment needs

inserting at the beginning of the CommandText string:

Login={login name}

e.g.

subname;Login=SOP;Context=some user data;Normalize

This extra segment indicates which login profile is to be used for the

mvConnection that will be created internally on a temporary basis by the

mvCommand construction process in order to allow the retrieval of schema

information via the specified subroutine.

Below is an example subroutine which illustrates this principle. Note, the data is

hard-coded here, whereas in reality it would be typically selected dynamically from

a file.

SUBROUTINE ADAPTERFILL (ARG1, ARG2, ARG3, ARG4, RETURNDATA, ERRMSG)

*

 IF ARG1 = 'Get schema' THEN

 ARG4 = 'SALESORDER'

 RETURNDATA = 'NUMBER CUSTOMERNAME PRODUCT'

 END ELSE

 AM = CHAR(254)

 SEP = CHAR(30)

 RETURNDATA = '3':AM:'3':AM:'Leather Logistics Associates

 Corp.':AM:'YSS61²WTM43²BSS69²MAP63':SEP:'4':AM:'4':AM:'Carpets

 Technology Brokers Corp.':AM:'G4M11²BFS86²RRG1²BAS73²PSS67'

 END

*

 RETURN

mv.NET Adapter Objects Developer's Introductory Guide - The mvCommand Class

Page 27

CommandText for 'Table Direct' Types

For a CommandType property setting of TableDirect, the CommandText property

needs to hold the syntax of the command to be run against the associated

database. This is the same syntax as per a CommandType setting of 'Text'.

The difference between a TableDirect and a Text CommandType is that the

TableDirect does not split (normalize) multivalues or subvalued data into separate

rows/tables. VM and SVM marks are left within the data, although you do have the

ability to control how these characters are transformed for display purposes if

required - please refer to the Select Command section for further details on this

capability.

Accessing Schema Information

The GetFullSchema function of the mvCommand class returns a DataSet describing

the characteristics of each column within each DataTable returned by a select

command.

Each DataTable contains the following column names:

 ColumnName

 ColumnOrdinal

 ColumnSize

 NumericPrecision

 NumericScale

 DataType

 ProviderType

 IsLong

 AllowDBNull

 IsReadOnly

 IsRowVersion

 IsUnique

 IsKeyColumn

 IsAutoIncrement

 BaseSchemaName

 BaseCatalogName

 BaseTableName

 BaseColumnName

Each row within each DataTable represents a column within the resultant

DataTable and describes the characteristics of the associated column.

mv.NET Adapter Objects Developer's Introductory Guide - Dynamic Normalization

Page 28

Dynamic Normalization

This chapter outlines the Dynamic Normalization technology incorporated within

Adapter Objects. This addresses the problem of how to transform multi and

subvalued data into ADO.NET data structures.

The Need for Normalization

Because multivalued databases typically contain data structures incorporating

nested (multivalued) data, an important requirement for an ADO.NET managed

data provider is to support a mechanism whereby this nested data is 'flattened' to

fit the 2-dimensional table structures of ADO.NET.

There are 2 basic approaches to producing flattened data; either transform all data

on a regular/scheduled basis so that there is a permanently flattened version of

the data available to satisfy selection requirements; or, alternatively, perform this

flattening process dynamically in real-time.

Adapter Objects adopts the latter of these 2 approaches to provide a real-time

data feed to applications and also to prevent the creation of duplicate data

repositories. The term given to this process within Adapter Objects is 'Dynamic

Normalization'

Dynamic Normalization Overview

There are several challenges to be met when moving data (bidirectionally) from a

multidimensional data source to a 2-dimensional repository:

mv.NET Adapter Objects Developer's Introductory Guide - Dynamic Normalization

Page 29

a) Multivalued fields must be split into multiple rows or multiple related files.

b) Multivalue associations must be represented/mirrored in the 2-dimensional

repository.

c) Physical ordering of multivalued data must be preserved.

d) What ever approach is taken to the above 3 issues, it must be possible to

reconstitute a correct multivalued representation of the data in order to allow

updates of the original multivalued data source to be performed.

The task of representing multivalued associations within the ADO.NET

environment is eased somewhat by the fact that the DataSet class supports the

concept of relationships; i.e. it not only allows data to be held, but also the

definition of the relationships between the data. Thus, the result of the dynamic

normalization process is typically a dataset with a number of tables related

together in a manner which reflects the nature of the multivalued data with the

source file.

The Use of Extended Dictionary Data

The dynamic normalization process within Adapter Objects draws upon several

extended dictionary definition areas which may be created and maintained by the

Data Manager utility. These areas are as follows:

File Properties
In the Data Manager's treeview list of files within an account, you may right-click a

file name and select the Properties option to view a range of general details

pertaining to the file. At the bottom of Properties window is an area titled

'Adapter Objects Name Mappings'. Within this area you may specify the DataTable

name by which the file will be known within the ADO.NET environment and the

names of the normalized tables that will be produced as a result of the dynamic

normalization process.

Each multivalued and subvalue group defined within the mv.NET schema for the

file is represented by a row within the Group Data Tables Names grid. You can

define the Table name of the ADO.NET DataTable that will be created to hold each

multivalued/subvalued group data. You are also able to define the name of the

column which is created within the DataTable to hold the ordinal

multivalued/subvalue position of each individual nested data element.

mv.NET Adapter Objects Developer's Introductory Guide - Dynamic Normalization

Page 30

Dictionary Schema
Within the Extended tab of the Data Manager’s Schema Maintenance window for a

file, you are able to define the Adapter Column name for each field. This name is

used as the column name for the field whenever it is represented within a

DataTable within the ADO.NET environment.

In addition to defining a column name it is important to make sure that all

multivalued/subvalued fields are both flagged as being multi/subvalued (via the

MV Type field) and are also assigned an MVGroup/SVGroup name within the

extended dictionary definition.

It is the presence of an MVGroup/SVGroup name in conjunction with an MV Type

setting of Multivalued or Subvalued which indicates to Adapter Objects that

dynamic normalization is relevant for a particular field.

It is also important to make sure that the Data Type setting within the extended

definition is correct for each data field.

Using Dynamic Normalization

In order to trigger dynamic normalization within Adapter Objects, you will need to

add the ;Normalized segment to all of your commands. See Text Command

Types section in the mvCommand Class chapter for more details on this. Thus,

when the command is invoked (using either the Fill or Update method of the

mvDataAdapter class), dynamic normalization will be used automatically. If you

are using SQL syntax, you need to add the NORMALIZED keyword to the end of your

SQL command.

When invoked, dynamic normalization will (where relevant) produce multiple

related DataTables within the host DataSet. You may then use the standard

ADO.NET methods of navigating parent/child rows within DataSet as necessary.

If you add or delete rows within a dynamically normalized (child) table, Adapter

Objects will automatically maintain the ordinal multivalue/subvalue position

columns ready for when the data is de-normalized and written back to the

multivalue database.

If the Normalized segment/keyword is omitted from the command text,

multivalues and subvalues will be 'exploded' into multiple rows. i.e. a 1st normal

form simulation.

mv.NET Adapter Objects Developer's Introductory Guide - Dynamic Normalization

Page 31

Exploding and Filtering Multivalued Data

If the ;Normalized segment is omitted from the CommandText property and the

CommandType is set to Text, data will be returned in 'exploded' 1st normal form.

In such a scenario, the ;MVFilter segment may be appended to the

CommandText property to indicate that selection criteria should be applied to the

exploded data in order to filter out those multivalues/subvalues that do not pass

the selection criteria. If you are using SQL syntax, the MVFILTER keyword should

be used.

Note, the Normalized and MVFilter functionality are mutually exclusive. Also note

that MVFiltered data may only be used for read-only purposes.

mv.NET Adapter Objects Developer's Introductory Guide - Updating Data

Page 32

Updating Data

The topic of updating database information warrants special treatment within this

guide. This chapter explains the different ways in which you may update

MultiValued data from within the ADO.NET environment.

The Update Options Available

There are 2 basic ways of updating data via Adapter Objects:

1. Using the mvDataAdapter.Update method on a DataSet which has been

previous populated using the mvDataAdapter.Fill method. The data

adapter's selection command must include the 'Normalized' keyword.

Note, the data adapter must have an UpdateCommand configured for this

approach to work.

2. Creating a standalone UpdateCommand and using its ExecuteNoQuery

method.

Updating via the mvDataAdapter.Update Method

The mvDataAdapter's Update method requires that its UpdateCommand property

references a correctly configured mvCommand object. It is this command object

which is used to perform the update processing.

Adapter Objects' UpdateCommand object performs its updating using a series of

principles and assumptions. Understanding these will allow you to understand

how you may use it to update your MultiValued data. These

principles/assumptions are as follows:

mv.NET Adapter Objects Developer's Introductory Guide - Updating Data

Page 33

1. The CommandText contains one or more 'Set' segments indicating which

fields are to be updated.

2. The CommandText (optionally) contains an 'UpdateControl' segment

indicating which fields are to be used to control optimistic locking.

3. If the UpdateControl segment is used, the UpdateCommand must contain

a parameter within its Parameters collection for each field specified within

the UpdateControl segment. The name of each parameter should be

field.Orig where field is the name of the field as specified within the

UpdateControl segment. Its value needs to be the original value of the

field as retrieved initially from the database.

If you wish to update individual multivalue and subvalue data elements, the

SelectCommand of the data adapter (which was used to originally populate the

DataSet) must have a CommandText which includes the 'Normalized' keyword.

The inclusion of this keyword forces Adapter Objects to split the retrieved data

into several related hierarchical DataTables.

The DataTables of the DataSet created by this process include special columns

that allow Adapter Objects to keep track of which multivalue and subvalue position

each piece of non-singular data relates to. If you insert or delete rows of data

within a DataTable which represents multivalued or subvalued data,

AdapterObjects will automatically maintain the relevant multivalue/subvalue

position column data.

Thus, when the Update of the data adapter is used, Adapter Objects is able to

recompose the item data ensuring that the correct physical ordering of

multivalued and subvalued data is honored.

If you are only updating singular data fields, the Normalized keyword is optional.

Creating an Update Command Object

If you have configured your mvDataAdapter using either the Data Adapter Wizard

within the Visual Studio design environment or using the

mvDataAdapter.GenerateCommands method (see following section), an

UpdateCommand object will be automatically created within your data adapter.

mv.NET Adapter Objects Developer's Introductory Guide - Updating Data

Page 34

The syntax of this generated update command will assume that all retrieved fields

will need updating with current values and that all fields are to be checked as part

of the optimistic lock control process.

If you have manually instantiated and configured the SelectCommand of your data

adapter, then you will need to manually create the UpdateCommand object and

configure it using the guidelines listed in the previous section. The following

section discusses this topic in detail.

The mvDataAdapter.GenerateCommands Method

The mvDataAdapter class has a method called 'GenerateCommands'. This method

can be used to programatically generate default Select, Update, Insert and Delete

command objects within a data adapter based on the contents of a supplied select

statement.

Using a Manually Created Update Command

If you wish to perform an update using an mvCommand object which you have

instantiated and configured programmatically, there are 4 possible valid scenarios:

1. Using the mvDataAdapter.Update method, you are updating fields (some of

which contain multivalued or subvalued data) within a DataSet which has been

previously populated using a select command which includes the 'Normalized'

keyword.

2. Using the mvDataAdapter.Update method, you are updating only singular field

information within a DataSet which has been previously populated using a

select command which may or may not have included the 'Normalized'

keyword.

3. Using the mvCommand.ExecuteNonQuery method, you are updating fields,

some of which contain multivalued or subvalued data. The mvCommand

object has a CommandType set to TableDirect

4. Using the mvCommand.ExecuteNonQuery method, you are updating singular

data fields only.

All of the above valid scenarios may be augmented with the use of optimistic

locking via an UpdateControl segment.

mv.NET Adapter Objects Developer's Introductory Guide - Updating Data

Page 35

Each of these 4 scenarios is discussed below:

Scenario 1: Multivalued data update within a normalized

DataSet
In this scenario, the update command object must use a CommandText property

which contains the appropriate Set segments and the Normalized keyword. If the

UpdateControl segment is used, the command object must also contain the

relevant parameter objects as described in the previous section.

Scenario 2: Singular data update within a DataSet
In this scenario, the update command object must use a CommandText property

which contains the appropriate Set segments. If the UpdateControl segment is

used, the command object must also contain the relevant parameter objects as

described in the previous section.

Scenario 3: Multivalued data update via ExecuteNonQuery
In this scenario, the update command object must use a CommandText property

which contains the appropriate Set segments and the ID segment to identify the

relevant item ID to be updated. If the UpdateControl segment is used, the

command object must also contain the relevant parameter objects as described in

the previous section. The command object's CommandType should be set to

TableDirect and the multivalue/subvalue marks should be included within the

supplied data to the Set segments. The ReplaceVM and ReplaceSVM segments

may be used to automatically convert printable characters in system delimiters.

Scenario 4: Singular data update via ExecuteNonQuery
As per scenario 2.

mv.NET Adapter Objects Developer's Introductory Guide - Multiple Commands

Page 36

Multiple Commands

The mvCommand object allows you to define multiple commands to be performed

in unison. This chapter explains this process and explores the implications of

doing so.

Defining Multiple Commands

Within a single command object, you may set the CommandText property to

multiple 'back-to-back' commands with each command being separated by the

string '/ /'. The data adapter definition wizard allows multiple selection

commands to be defined, with corresponding multiple update, insert and delete

commands being generated automatically.

Select Command Execution

Each individual selection command is executed in isolation but after all commands

have been performed, the resultant DataTables are related based on foreign key

dependencies defined within the extended dictionary definitions.

Update Processing

The Update method of the mvDataAdapter class processes each DataTable within

the DataSet, applying the correct update, insert and delete commands as

necessary.

mv.NET Adapter Objects Developer's Introductory Guide - The Data Adapter Wizard

Page 37

The Data Adapter

Definition Wizard

This chapter describes the wizard which is invoked when you drag and drop an

mvDataAdapter control onto the surface of a form within Visual Studio.

Invoking the Wizard

Within the Data tab of Visual Studios’ Toolbox window are 3 Adapter Objects

controls:

mvDataAdapter

mvCommand

mvConnection

If you drag and drop the mvDataAdapter control onto a form, the Adapter Objects’

Data Adapter wizard will be invoked.

Once you have created an mvDataAdapter instance, you may re-invoke the wizard

by clicking the Define Adapter link within the Properties window when the data

adapter is selected.

mv.NET Adapter Objects Developer's Introductory Guide - The Data Adapter Wizard

Page 38

Wizard Steps

To define your data adapter, the wizard guides you through a series of steps:

Step 1 : Define your data source
This step allows you to specify which database is to be accessed by the data

adapter. You can either select the name of a login profile which you have

previously defined within the Data Manager or, if you already have one or more

mvConnection instances defined within the form, select the name of an existing

mvConnection instance. The Define new connection button shown in this step

allows you to define a new login profile name or allows you to invoke the Data

Manager on order to define new server/account profile definitions.

Step 2 : Define your selection command(s)
This step allows you to specify which database is to be accessed by the data

adapter. You may define multiple selection commands if required – see Multiple

Commands chapter for more details on this topic. For each command, you may

define:

• the source data file

• the selection criteria

• the sort criteria

• the list of fields that you wish to extract from the source data file

• whether you wish to invoke dynamic normalization

• multivalue/subvalue character translation (if dynamic normalization is not

used)

mv.NET Adapter Objects Developer's Introductory Guide - Sample Application

Page 39

Sample Application

The installation of the mv.NET Client Interface Developer product will install a sample

application illustrating the use of many of the features described in this manual. This

project may be found in the following location:

C:\ProgramData\BlueFinity\mv.NET\Version4.0\Examples

Or, for older systems:

C:\Documents and Settings\All Users\Application Data\BlueFinity\mv.NET\Version4.0\Examples

VB.NET and C# sample code is provided.

The following sections of this chapter cover each WinForm component within the

application.

frmWizard (not in the VS2010 sample)

This form contains example use of the following features:

1. The drag and drop of an mvDataAdapter control onto a form with the resulting

invocation of the data adapter wizard.

2. The generation of typed datasets.

3. The passing of datasets into the DataGrid control.

4. The passing of datasets into Crystal Reports.

5. The manual construction of mvDataAdapter and mvCommand objects.

mv.NET Adapter Objects Developer's Introductory Guide - Sample Application

Page 40

 frmStandalone/frmMain

This form contains example use of the following features:

1. The use of the mvDataReader class.

2. The use of the TableDirect command type.

3. The use of the StoredProcedure command type.

4. The generation of XML data from datasets.

5. The manual creation and use of Update, Insert and Delete commands.

