
 mv.NET Core Objects

 Developer's Introductory Guide

A product from BlueFinity

Copyright Notices

Copyright BlueFinity International 2004 onwards

Document ref: mvNET_CO_DI

Revision 4.5.0

All rights reserved BlueFinity International 2004 onwards

Contacting Us

We are always very happy to discuss all aspects of our products with our

customers - prospective and current alike. You can contact us via the following

methods:

Website: www.bluefinity.com

Email: info@ bluefinity.com

Address: 10260 SW Greenburg Road, Suite 700, Portland, OR 97223, USA

Address: Hamilton House, 111 Marlowes, Hemel Hempstead, Herts, HP1 1BB, UK

Trademark Acknowledgements

The mv.NET product and logo are trademarks of BlueFinity International.

All other trademarks and trade names are the property of their respective owners

and are used in this documentation for identification purposes only

file:///C:/Help%20Authoring/mv.NET/Core%20Objects/www.bluefinity.com
mailto:info@%20bluefinity.com

Contents

mv.NET Core Objects 1

Copyright Notices .. 2

Contacting Us .. 2

Trademark Acknowledgements ... 2

Welcome to Core Objects 10

The mv.NET Family of Products ... 10

Feature Overview ... 11

The mv.NET Suite .. 12

Developer's Introductory Guide Contents .. 12

Further Reading ... 14

Support ... 14

Product Installation 15

Installation Media .. 15

Product Installation Files ... 15

CID Installation File ... 16

Downloading Server Components .. 17

What Next? .. 18

Technical Overview 19

Core Objects ... 19

Client Interface Developer ... 21

Session Manager ... 24

Runtime Deployment Kits .. 25

Configuration Database ... 25

MV Server Module .. 27

How do I ... ? 28

How do I start using Core Objects? .. 28

How do I let Core Objects know about the databases that I wish to access? .. 29

How do I connect to a database from my application? 30

How do I open a data file and read items? ... 31

How do I access the data within an item? .. 31

How do I write item data back to a file? ... 33

How do I delete items from a file? ... 34

How do I run my DataBASIC programs? ... 34

How do I select items from a file? .. 35

The Data Manager 38

Data Manager Versions .. 38

Running the Standalone Data Manager .. 39

Running the Addin Version of the Data Manager .. Error! Bookmark not defined.

Explorer Nodes : Overview ... 40

The Configuration Database .. 40

Explorer Node : Servers ... 42

Explorer Node : {server profile name} .. 42

Explorer Node : Accounts .. 43

Explorer Node : Logins .. 43

Explorer Node : {login profile name} .. 44

Explorer Node : Server Console Window .. 44

Explorer Node : {account profile name} ... 44

Explorer Node : Session Manager Settings ... 45

Creating a Server Profile .. 46

Connection Port Specific Details .. 47

Defining Connection Negotiations ... 48

Connection Control ... 50

Communication Characteristics ... 51

Creating an Account Profile ... 53

Login Parameters .. 54

Session Pooling ... 55

Housekeeping Settings ... 56

Other Account Profile Settings .. 57

Creating a Login Profile ... 59

The Server Console Window... 60

Opening a Server Console Window .. 60

Terminal Emulation ... 60

Server Component Download .. 60

Account Enabling .. 61

SOP Demo Account Download ... 62

Testing a Connection .. 62

Connecting into an Account .. 63

Viewing the List of Available Files .. 63

Accessing Alternative Dictionaries ... 65

Working with Files ... 66

The Data Manager Toolbar .. 66

Maintaining the Schema of a File ... 67

Schema Item Visibility ... 68

File Properties ... 69

Maintaining Item Data ... 72

Editors-style Data View ... 72

Grid-style Data View ... 73

Special Keystrokes .. 74

Queries .. 74

Query Overview ... 74

Maintaining Queries .. 74

Testing the Query ... 78

Parameterized Values ... 78

mv.NET Soft Locks ... 78

Extended Dictionary Definitions 81

The Need for Extended Dictionary Definitions ... 81

Maintaining Extended Dictionary Definitions ... 82

Extended vs. Native Dictionary Definitions .. 82

The Storage of Native Dictionary Definitions ... 82

Extended Definition Fields ... 83

AttrPos (1)... 83

Title (2) ... 84

Justification (3) ... 84

Width (4) ... 84

DataType (5) ... 84

MVType (6) ... 85

MVGroup (7) ... 85

SVGroup (8) .. 85

InputMandatory (9) ... 86

InputPrompt (10) .. 86

InputDefault (11) .. 86

InputMin (12) .. 86

InputMax (13) ... 86

InputCasing (14) ... 86

InputOptions (15) ... 86

InputInOptions (16)... 86

BooleanTrue (19) .. 86

BooleanFalse (20) .. 87

Dependencies (21) .. 87

LinkedFile (22) .. 87

LinkedFileIDField (23) ... 87

LinkedFileDescField (24) ... 87

Notes (25) ... 87

AdapterColumnName (26) .. 87

SysDelimTrans (27) ... 87

SysDelimTransVM (28) .. 88

SysDelimTransSVM (29) .. 88

LinkedFileProperty (30) ... 88

CompoundDataSep1 (31) .. 88

CompoundDataPos1 (32) .. 88

CompoundDataSep2 (33) .. 88

CompoundDataPos2 (34) .. 88

Compound Data Handling ... 89

Working With a Single Compound Data Value ... 90

Working With a List of Compound Data Values ... 91

The Session Manager 92

The Need for Session Management .. 92

What is the Session Manager ... 93

The Location of the Session Manager .. 93

Multiple Session Managers .. 94

Configuring Session Management ... 95

The Session Monitor Application ... 99

Monitoring a Remote System ... 101

The License Manager 102

The Role of the License Manager ... 102

The License Manager Service ... 102

Specifying the License Manager Address ... 103

Licensing Principles ... 103

Applying for Database Access Licenses ... 103

Installing a Database Access Licenses ... 104

Viewing Installed Database Access Licenses .. 106

License Manager Evaluation Mode ... 106

Multiple License Managers .. 106

Class Library Overview 108

Introduction .. 108

Core Objects - Class Summary .. 109

Class mvEnvironment .. 111

Property Summary .. 112

Class mvConfiguration .. 113

Member Summary ... 113

Servers .. 114

Accounts ... 116

Logins ... 117

Control ... 117

Gateways .. 119

Class mvServer .. 119

Property Summary .. 120

Class mvAccount ... 120

Method/Property Summary ... 121

Class mvFile .. 124

Method/Property/Event Summary ... 124

Additional Notes ... 126

Bulk Updating ... 126

Exploded Selecting.. 127

Class mvItem ... 128

Method/Property Summary ... 128

Class mvSelect ... 130

Property Observance ... 131

Property Summary .. 133

Class mvItemList ... 134

Method/Property Summary ... 134

Class mvSchema .. 136

Method/Property Summary ... 136

Class mvSchemaItem ... 137

Extended Dictionary Definitions .. 137

Referring to Attributes by Name ... 137

Method/Property Summary ... 138

Class mvDBRPC ... 141

Method/Property Summary ... 143

Class mvDataTable .. 144

Method/Property Summary ... 145

Class mvQueryList ... 145

Property Summary .. 145

Class mvQueryRow .. 146

Property Summary .. 146

Class mvQueryColumn .. 147

Property Summary .. 147

Class mvQueryColumns ... 147

Property Summary .. 147

Class mvSessionControl .. 148

Method Summary .. 148

Event Summary ... 148

Class mvSession .. 149

Property Summary .. 149

DataBASIC Methods ... 149

Method Summary .. 149

Supported IConv Codes .. 151

Supported OConv Codes ... 151

Gateways 153

Gateway Overview ... 153

Specifying Access via a Gateway .. 153

Accessing Gateways from the Client .. 154

Installing the Gateway Service ... 154

Gateway Hopping .. 155

Deploying Your Application 156

mv.NET's Runtime Deployment Kits ... 156

Using Runtime Deployment Kits .. 156

Client Runtime Deployment Kit .. 157

Server Runtime Deployment Kit ... 157

Extended Dictionary Deployment .. 157

Session Usage Statistics 159

Why Gather Session Statistics? ... 159

Activating Statistics Gathering? ... 159

Where are Statistics Stored? ... 160

Viewing Session Statistics? .. 160

Statistics Category: Session Utilization .. 161

Statistics Category: Pooled Sessions .. 162

Statistics Category: Polls taken to Acquire Session 162

Statistics Category: Session Acquire Requests Per Minute 162

Troubleshooting 163

Debugging Server-side Code ... 163

The Connection Monitor ... 163

The MVNET.RECORD file ... 163

The MVNET.TRACE file .. 164

The Sample Applications 165

Application Location .. 165

Core Objects Application ... 165

Binding Objects Application .. 166

Adapter Objects Application .. 166

Core Objects Developer's Introductory Guide - Welcome to Core Objects

Page 10

Welcome to Core

Objects

Firstly, thank you for either purchasing BlueFinity's Core Objects product or for taking

the time to explore the great functionality that it can provide to you and your fellow

developers.

This chapter outlines the members of the mv.NET family of products to which Core

Objects belongs. It also summarizes the contents of this guide.

The mv.NET Family of Products

Core Objects is one of the members of the mv.NET family of products authored by

BlueFinity. mv.NET is the essential tool for any MultiValued database developer

wishing to create .NET based application interfaces to their current or new

MultiValued database file system.

Core Objects not only provides the underlying framework upon which all other

mv.NET products are based - it also provides, in its own right, a wealth of end-

user capabilities to allow the developer to rapidly create feature-rich, high

performance applications using the powerful tools provided by Microsoft's .NET

environment.

The design goal of mv.NET is to enable the MultiValued developer to combine the

power and flexibility of proven MultiValued technology with the state-of-the art,

Core Objects Developer's Introductory Guide - Welcome to Core Objects

Page 11

feature rich .NET environment. Its design also enables and encourages the

developer to leverage, wherever possible, previously acquired MultiValued skills.

BlueFinity's team of software engineers has huge knowledge and experience of

using both MultiValued systems and the .NET environment. We proudly regard

ourselves as being one of the foremost companies in providing this technology

bridge and look forward to working with you to enable you to meet your software

development goals.

Feature Overview

The Core Objects product provides a 100% native .NET interface to all major

MultiValued database platforms, allowing .NET developers to access all aspects of

MultiValued systems – both data and program code - from within their .NET

application.

The Core Objects architecture has been designed with both performance and

flexibility in mind. This, combined with an implementation that provides seamless

integration with the .NET environment, provides a powerful tool for enabling

MultiValued developers to harness the full power of both their MultiValued system

and the .NET platform.

Core Objects also has strong integration with Microsoft’s Visual Studio.NET

product, allowing the MultiValued developer to carry out virtually all aspects of

application creation from within the VS.NET environment.

The product's key features are as follows:

• Feature-rich, MultiValued data structure aware data objects

authored in 100% managed .NET code and supporting the

native .NET databinding interfaces to promote rapid

application development.

• High performance connections from client to database

server using a variety of transport technologies dependent

on flavor of MultiValued database platform.

Core Objects Developer's Introductory Guide - Welcome to Core Objects

Page 12

• Advanced fetch-on-demand and background data retrieval

technology, ensuring maximum application database

performance

• Support for all major MultiValued platforms.

• Support for stateless applications, e.g. Web Services,

featuring optimistic locking, automated state

retention/reconnection and database connection pooling.

The mv.NET Suite

Core Objects is one of three products within the mv.NET suite; the suite

comprising of:

• Core Objects - object oriented native .NET access to

MultiValue databases.

• Solution Objects - Strongly-typed class-based access to

your MultiValue database.

• Adapter Objects - complete implementation of an ADO.NET

managed data provider for MultiValue databases, offering a

standardized interface to database access.

Core Objects Developer's Introductory Guide - Welcome to Core Objects

Page 13

Developer's Introductory Guide Contents

The contents of this guide are designed to allow a developer to easily install,

configure and use the wealth of functionality provided by the Core Objects

product. A summary of each chapter follows:

Product Installation

This chapter takes you through the process of installing Core Objects on both the

developer’s workstation and the MultiValued database server.

Technical Overview

This chapter lays out, in very broad terms, the full breadth of the technology

provided by Core Objects. It is intended to be a 'gentle' introduction to the range

of features that Core Object provides.

How do I … ?

This chapter takes you through a series of 'How do I …' style questions that act as

a basis for learning the basics of using Core Objects. It is intended to be used as a

framework for further, more detailed investigation using other chapters of this

guide along with the product’s comprehensive on-line help.

The Data Manager

The Data Manager is an important and valuable tool for the MultiValued developer.

This chapter takes you through all of the features of the Data Manager and, in

doing so, also explains how the Data Manager itself has utilized many of the

aspects of the Core Objects class library.

Extended Dictionary Definitions

mv.NET supports the concept of extended dictionary definitions – meta data which

allows a comprehensive definition of both the structure of data within a file and

relationships between files to be created. This chapter explains both the content

and relevance of this extended definition data.

The Session Manager

The Session Manager allows you to utilize Core Objects' session pooling capability.

This chapter explains the concepts behind session pooling and takes you through

the (very straight-forward) visual interface of the Session Manager application.

Core Objects Developer's Introductory Guide - Welcome to Core Objects

Page 14

Class Library Overview

The object classes that make up Core Objects provide a wealth of functionality.

This chapter outlines the hierarchy and content of the Core Objects class library.

Deploying Your Application

When the time comes to deploy your application, the relevant Core Objects

components must be included within your setup process. This chapter discusses

how this may be achieved.

The Sample Application

Core Objects is provided with a sample application which illustrates the use of

many its features. This chapter takes you through this application, pointing out

and explaining the key aspects of Core Objects that have been used.

All of the code examples in this guide use VB.NET syntax; however, the Core

Objects components can be used with any .NET CLR compliant language, e.g. C#

or J#.

Further Reading

In addition to the wealth of material contained within this guide, you may also find

it very beneficial to read the 'Tips and Best Practices' guide which is also installed

as part of the CID product. This guide contains many useful suggestions and

insights into the ways in which mv.NET can be configured and used.

Support

If you have any queries about the installation or use of this product, please do not

hesitate to contact BlueFinity's support staff who will be happy to assist.

email: support@bluefinity.com

mailto:support@bluefinity.com

Core Objects Developer's Introductory Guide - Product Installation

Page 15

Product Installation

This chapter outlines how to install the Core Objects product on both the developer’s

workstation and the MultiValued database host. Please note that the Getting Started

guide installed as part of the Client Interface Developer module contains a detailed set

of instructions aimed at making the task of getting up and running with the product as

smooth as possible, the purpose of this chapter is to provide an overview of this

process.

Installation Media

The product installation files can be downloaded from the BlueFinity ftp server. If

you have already purchased the product, please email BlueFinity support

(support@bluefinity.com) to request the current ftp site user name and password.

If you would like to download a copy for evaluation purposes, please fill in the

download request form on our website: http://www.bluefinity.com/downloads.asp

Product Installation Files

There are 3 product installations available:

CID – Client Interface Developer installation file

CRDK – Client Runtime Deployment Kit installation file

SRDK – Server Runtime Deployment Kit installation file

For most developers, simply running the CID setup program will be sufficient to

install all the necessary development and runtime components onto your

http://www.bluefinity.com/downloads.asp

Core Objects Developer's Introductory Guide - Product Installation

Page 16

workstation and will also install the necessary routines to allow you to download

the server components onto your database server(s).

The CRDK and SRDK files are covered in the Deployment chapter within this guide.

Note, the SRDK routine will automatically install a runtime version of the Data

Manager as part of its installation procedure.

CID Installation File

The Client Interface Developer installation file will install the following

components:

• Core Objects class library binaries

• mv.NET services

• Initial Configuration Database structure and content

• Server components download files

• Data Manager application

• Session Manager components

• Visual Studio.NET integration assemblies

The CID installation process requires very little intervention by the user - simply

follow the on-screen prompts. At the end of the installation process, you will be

able to start using the product.

After installing the CID. The basic procedure that you will need to follow to start

using Core Objects on your development machine are:

1. Use the Data Manager utility to create a Server Profile within your

Configuration Database and then download the server components onto

your MultiValued system. Please refer to the following section and also the

Server Console section within Data Manager chapter for details on how to

do this.

The Data Manager application (mvNET.DataManager.exe) is installed into:

Program Files\BlueFinity\mv.NET\Version4.x\bin

A shortcut to this program is created in the Start\Programs\mv.NET menu.

Core Objects Developer's Introductory Guide - Product Installation

Page 17

2. 'Enable' each of your application account(s) that you wish to access via

mv.NET

3. Use the Data Manager utility to create an Account Profile within your

Configuration Database for each 'enabled' account. At this point you should

be able to connect into your account using the Data Manager to view and

modify account data and program data.

4. Add a reference to the Core Objects assembly within your .NET application.

This assembly (BlueFinity.mvNET.CoreObjects.dll) can be found in:

C:\Program Files\BlueFinity\mv.NET\Version4.x\bin

Downloading Server Components

For Core Objects on the client to interact with a MultiValued database, the server

hosting the database must have the mv.NET server components installed; this is

done using the Data Manager.

Once you have installed the Client Interface Developer onto your workstation

(which will automatically install the Data Manager application), you need to use the

Data Manager to create a Server Profile representing the server onto which you

wish to install the server components. Please refer to the section Creating a Server

Profile within the Data Manager chapter for full details on how to do this.

Once you have created your server profile, a server node within the Data

Manager’s explorer tree will be created. Double-clicking on the Server Console

Window node within this server node will allow you to open a session window onto

the server, from which you will be able to initiate the download of the server

components. Please refer to the Server Console section within the Data Manager

chapter for full details on establishing a server console window.

Using the server console window's terminal emulator (or by using a terminal

emulator of your own choice), you need to first create an account called MV.NET.

On those MultiValued systems where a privilege level is associated with an

account, the highest privilege level should be chosen. For MultiValued systems

where an additional user logon is required, you should also create a user named

MV.NET. For those MultiValued systems where a privilege level is associated with

user logins, this user should be given the highest privilege level setting. You then

need to logon to the MV.NET account (using the MV.NET user if relevant).

Core Objects Developer's Introductory Guide - Product Installation

Page 18

Strictly speaking, it is not mandatory for you to create a separate MV.NET account

– you could install the mv.NET server components into any account, but for sake of

clarity and understanding we recommend that you do create a dedicated

account/user.

Once you are at command level within the MV.NET account you are ready to

initiate the download of the server components. Select the Action/Download

Server Components menu option from the session window’s top menu bar. This

will ask you to confirm that you are at command level with the MV.NET account

and will then start the download process. The whole process should take about 5

or 6 minutes to complete.

Basically, all that the download does is to transmit the contents of 2 files onto the

database server:

MVNET.INC

MVNET.BP

Both files contain the code of the server components. The download also creates a

handful of additional ancillary files within the MV.NET account.

When the download has completed, a Notepad window holding the contents of the

download trace file will be displayed. You need to glance down the contents of

this file to make sure that all of the programs have been downloaded successfully.

In the unlikely event of problems being encountered during the download, you will

need to email the trace file to support@bluefinity.com. We will then advise you on

what steps you need to take.

What Next?

After installing all the necessary Core Objects components, it may well be

worthwhile spending a few minutes reading the following 2 chapters. These will

provide an introduction to many of the more commonly used features of Core

Objects.

mailto:support@bluefinity.com

Core Objects Developer's Introductory Guide - Technical Overview

Page 19

Technical Overview

This chapter provides a technical backdrop to the Core Objects package. It discusses

the main architectural aspects of the product and examines the main components that

implement this architecture.

Core Objects

The architecture of Core Objects comprises three separate tiers:

• Client Interface Tier

• Session Pooling Tier

• MultiValued Server Tier

Each of these tiers is designed to be capable of residing on physically distinct

systems separated by remote connections, but it may be that some or all tiers run

on the same system – it all depends on the particular requirements of a specific

installation.

The Client Interface Tier contains all the .NET programmer visible objects, i.e. the

programming interface components that the developer works with in order to

produce an application. It is very likely that most of your development effort will

go into creating the contents of the client interface tier. The Client Interface

Developer module of Core Objects contains many features to assist you in this

task – see next section.

Typically, the Client Interface Tier will consist of the code that you write (using, for

example, VS.NET), the Core Objects dll files that implement the Core Objects

functionality plus any additional support files/assemblies that your application

utilizes.

Core Objects Developer's Introductory Guide - Technical Overview

Page 20

The Session Pooling Tier acts as the point of contact for Client Interface Tiers

wishing to access one or more remote MultiValue systems. The Client Interface

Tier to Session Pool Tier communications link utilizes .NET Remoting, which

provides high a performance, loosely coupled connection to allow flexibility in the

siting of these components.

The MultiValue Server Tier resides within the MultiValued database system. It is

the point of contact for one or more Client Interface/Pooled sessions. The link to

the MultiValued Server can utilize a variety of technologies, depending on what

flavor of MultiValue system is being used.

The MultiValued Server tier is written in MultiValue DataBASIC and, therefore, a

version of this tier (specifically coded and tuned) for each flavor of MultiValue

database platform is provided.

The following diagram summarizes the interrelationships between these three

tiers.

MV specific link e.g. Telnet, UniObjects etc.

mv.NET Libraries

mv.NET Server (DataBASIC)
 Components

Inter-
process
Comms

mv.NET Session Manager

mv.NET Session Cluster

.NET application Rich Client, Web App, Web Service, 3rd party
component/utility

Windows Service

Background
process

Core Objects Developer's Introductory Guide - Technical Overview

Page 21

The Core Objects product consists of three separately installable packages:

• Client Interface Developer, which includes the Data

Manager, Configuration Database and Session Pooling.

• Runtime Deployment Kits

• MultiValue Server Module

Client Interface Developer

The Client Interface Developer module should be installed on any workstation

wishing to utilize Core Objects in conjunction with a development environment

(such as Visual Studio.NET). It provides the programming interface into the Core

Objects technology, along with plug-in extensions to Visual Sudio.NET to allow

management of many aspects of a MultiValue system from within the VS.NET

native IDE.

The primary feature of the Client Interface Developer is a class library holding the

series of classes that allow a developer to connect to and work with a MultiValue

database. The diagram below shows the basic hierarchy of the Core Objects

classes:

Core Objects Developer's Introductory Guide - Technical Overview

Page 22

As part of the Client Interface Developer module, an application (written using

VB.NET and utilizing many aspects of Core Objects) is provided to allow the

maintenance of MultiValue systems - such as file and dictionary creation. This

application is known as the Data Manager. The Data Manager provides the

following capabilities:

• Maintenance of the Configuration Database (see below)

• Account maintenance

• File maintenance

• Dictionary maintenance

• Item data maintenance

mvSelect

mvAccounts

mvFile

mvItemList

mvItem

mvSelect

mvServers

mvServer

mvSchema

mvSchemaItem

mvAccount

mvEnvironment

Core Objects Developer's Introductory Guide - Technical Overview

Page 23

• Index maintenance

• Terminal emulation

• Intra and inter-system data transfer

The Data Manager is provided in the form of a standalone application.

To connect into a MultiValue system, Core Objects needs to know several things;

namely:

• what MultiValue systems are available for connection

• the address of a particular system

• what communications transport medium to use when

talking to a system

• how to login to a system

To that end, a Configuration Database is used to hold all of the following

configuration information:

• The list (and details) of all known local MultiValue servers

(Server Profiles)

• The list (and details) of all known accounts on all known

local servers (Account Profiles)

• Session pooling configuration settings

The Configuration Database's contents are maintained using the Data Manager

and setting up the initial contents of this database is one of the first tasks that you

will need to do when starting to use Core Objects.

Each client application needs access to a Configuration Database (either sited

locally or shared centrally over the LAN) to connect into a server.

As well as being able to maintain the contents of the Configuration Database using

the Data Manager application, the Core Objects class library contains classes to

allow the Configuration Database to be maintained programmatically by your own

application code (this is, in fact, exactly what the Data Manager does).

Core Objects Developer's Introductory Guide - Technical Overview

Page 24

Session Manager

The mv.NET Session Manager provides two key capabilities:

• To provide connection pooling across one or more

individual processes or workstations. Note, the terms

connection pooling and session pooling are used

interchangeably within this guide.

• To monitor the presence and activity of an active database

session

Connection Pooling is an essential feature for stateless applications, e.g. Web

applications. It allows a database connection to be held open after an application

has finished using it and then subsequently reallocated to another or same

application instance at some future point in time - thus saving on the time and

resources consumed in the initial creation of a database connection.

You should, therefore, utilize the Session Manager whenever there is a need to

hold open database connections to avoid repeatedly incurring connection creation

overheads.

The Session Manager can display a connection window for any active session,

allowing the traffic flowing through that session to be monitored. For Telnet

connections, a terminal emulator window is provided to allow keyboard generated

input from the client to be entered.

As well as being essential for Web-based applications, session pooling is also very

useful in a software development environment. In such an environment it is very

typical for a programmer to continually start and stop their application as part of

the debugging/testing cycle. On MultiValue systems where login can take several

seconds to negotiate, the ability for the Session Manager to hold a disconnected

session open, ready for re-use, is a valuable time-saving feature for the

developer.

The Session Manager communicates with both application and session(s) via

efficient inter-process mechanisms.

Core Objects Developer's Introductory Guide - Technical Overview

Page 25

Runtime Deployment Kits

Runtime deployment kit (RDK) modules are required by an organization to enable

deployment of the relevant mv.NET components necessary to run an application

developed using Client Interface Developer licenses. The RDKs are supplied as

part of Developer Licenses in two versions; one for client-systems where no local

session pooling is required and one for server systems where session pooling is

required. The relevant RDK will typically be incorporated within the developer's

own product installation script and will install all the components needed to

support the Core Objects class library at runtime.

A limited version of the Data Manager utility is also supplied as part of the runtime

license.

Configuration Database

In order to connect into a MultiValued system Core Objects needs to know a

number of things; namely:

• what MultiValued systems are available for connection

• the address of a particular system

• what communications transport medium to use when

talking to a system

• how to login to a system

Core Objects Developer's Introductory Guide - Technical Overview

Page 26

To that end, a configuration database is used to hold all of the following

configuration information:

• The list (and details) of all known local MultiValued servers

(Server Profiles)

• The list (and details) of all known accounts on all known

local servers (Account Profiles)

• Session pooling configuration settings

The configuration database is held as a series and files and folders, the location of

which is CommonApplicationData.

On modern systems, from Windows Vista onwards, this maps to physical folder:

C:\ProgramData

On older platforms, CommonApplicationData maps to physical folder:

C:\Documents and Settings\All Users\Application Data

Note, within Windows Explorer, the “ProgramData” folder may be hidden

from view. However, you can browse to it explicitly using the top

address bar input box within the Windows Explorer window.

The configuration database's contents are maintained using the Data Manager and

setting up the initial contents of this database is one of the first tasks that you will

need to do when starting to use Core Objects. Please refer to the How do I … ?

and Data Manager chapters later in this document for more details on this topic.

Each client application needs access to a configuration database. This access is

either via the Session Manager (in which case the client only needs to know the

address and port number of the Session Manager) or via direct file access (either

sited locally or shared centrally over the LAN).

As well as being able to maintain the contents of the configuration database using

the Data Manager application, the Core Objects class library contains classes to

allow the configuration database to be maintained programmatically by your own

application code (this is, in fact, exactly what the Data Manager does).

Core Objects Developer's Introductory Guide - Technical Overview

Page 27

MV Server Module

An essential part of Core Objects is the set of DataBASIC programs that reside on

the MultiValued system. These programs are responsible for servicing all client

generated requests and reside in an account typically named 'MV.NET' on the

MultiValued database system.

These components are written in MultiValued DataBASIC and, therefore, a version

for each flavor of MultiValued database is provided. Each of these versions has

been specifically tuned for optimum performance on the target MultiValued

platform.

The server components are downloaded onto the MultiValued system via the Data

Manager application. Please refer to the Product Installation and Data Manager

chapters for more details on this topic.

In order to access the data in an application account, the account has to be

mv.NET enabled. This 'enabling' process creates several file pointers into the

MV.NET account and also catalogs all of the server programs (if necessary). Again,

please refer to the Product Installation and Data Manager chapters for more details

on this topic.

Core Objects Developer's Introductory Guide - How do I ...?

Page 28

How do I ... ?

This chapter covers a series of 'How do I ?' type questions. It is intended to be used as an

introductory guide to getting started with the Core Objects product. If you have any 'How do I'

style questions that do not appear in this chapter, please email them to us at

support@bluefinity.com and we will be very happy to answer them. We will also add them to our

on-line knowledge base for the benefit of others.

Many of the answers provided in this chapter refer to classes within the Core Objects class library.

Please refer to the Class Library Overview chapter along with the on-line help for much more in

depth information on these matters.

How do I start using Core Objects?

The first action is to install the software - please refer to the previous chapter for full

details on how to do this. The software installation process needs to be done on your

software development workstation - a workstation that must, at the very least, have the

Microsoft .NET framework installed, but will typically also have Visual Studio .NET installed.

The Core Objects module which needs to be installed first is the Client Interface Developer.

The installation routine for this product will install all of the components that you will

utilize in getting connected to and then working with a MultiValued database.

The CID setup routine installs a Getting Started Guide. We strongly recommend that

developers read this guide if they are new to mv.NET. A link to the guide is placed in the

Start\Programs\mv.NET menu.

Once the Client Interface Developer has been installed, you need to reference the following

dll from within your .NET project:

mailto:support@bluefinity.com

Core Objects Developer's Introductory Guide - How do I ...?

Page 29

BlueFinity.mvNet.CoreObjects.dll

This dll can be found in Program Files\BlueFinity\mv.NET\bin\version

Note, in Visual Studio .NET, you can use the Project\Add Reference menu option to add

project references.

Once you have installed the software, you then need to use the Data Manager to define a

server and an account profile to allow access to your MultiValued account data and

programs. See next How do I ?

How do I let Core Objects know about the databases

that I wish to access?

Before Core Objects can connect to a MultiValued database, you need to give it some basic

details about where the database is located, how it can be connected to and what kind of

flavor it is. These pieces of definition information are collectively known as a 'Server

Profile'. Thus, you need to create a server profile for each MultiValued database installation

that you wish to access.

The easiest way to do this is to use the Data Manager application - this will have been

installed as part of the Client Interface Developer product installation procedure. A shortcut

to the Data Manager will have been placed in your Start\Programs\mv.NET menu.

Please refer to the Data Manager chapter for details on how create a server profile.

Once you have created a server profile, you will need to create an 'account profile' for each

MultiValued database account that you wish to access on that server. Again, the Data

Manager should be used to do this.

Please refer to the Data Manager chapter for details on how create an account profile.

Once you have a server profile created that contains an account profile, you are ready to

connect to and use your MultiValued database.

Core Objects Developer's Introductory Guide - How do I ...?

Page 30

How do I connect to a database from my application?

The first thing to check is that you have a reference to the following Core Objects assembly

(dll file):

BlueFinity.mvNet.CoreObjects.dll

This dll can be found in Program Files\BlueFinity\mv.NET\bin\version

Next, you need to create an instance of an mvAccount object. This can be done as follows:

Dim myAccount As New mvAccount(LoginProfileName)

The Login variable needs to be the name of a Login Profile that has been defined using the

Data Manager. We recommend that you use Login Profiles wherever possible as it provides

a valuable level of naming abstraction from the names of your servers and accounts. Please

refer to the Creating a Login Profile section within the Data Manager chapter for further

details on Login Profiles.

An important aspect of the login process is the mechanism by which mv.NET locates the

configuration database (the place where your server, account and login profiles are stored).

The process (in order of sequence) which mv.NET goes through in order to ascertain the

location of the configuration database is as follows:

1. If address of the Session Manager has been passed in via either the

mvEnvironment.Login method or the mvAccount constructor, use that information.

2. If path of the configuration database has been passed in via either the

mvEnvironment.Login method or the mvAccount constructor, use that information.

3. Look for the 'ConfigurationPath' file in CommonApplicationData. If it exists, read its

contents and look for a 'Configuration' folder at that location.

4. Look for a 'Configuration' folder in CommonApplicationData. If it exists, use that as the

configuration database

If none of the above succeeds an error is raised.

An example of the address of the Session Manager being passed as part of the mvAccount

constructor is as follows:

Dim serverAddress As String = "Pluto:10013"

Dim myAccount As New mvAccount(LoginProfileName, ServerAddress)

Core Objects Developer's Introductory Guide - How do I ...?

Page 31

Here, Pluto is the system name of the server hosting the Session Manager - listening on

port 10013 (which is the default port).

How do I open a data file and read items?

Using an mvAccount object (see 'How do I connect into a database?'), you first need to use

its FileOpen method, for example, to open a file called ORGANIZATION, you would use the

following code:

Dim OrgFile As mvFile = myAccount.FileOpen("ORGANIZATION")

If the file is successfully opened, the mvFile object's Read Method can then be used to read

an item. For example, to read item ID '0001', you would use the following code:

Dim OrgItem As mvItem = OrgFile.Read("0001")

The mvItem object can then be used to access the data within the item. See 'How do I

access the data within an item?'.

Note, the mvFile object supports a range of methods that read data from a file, e.g. ReadV

and ReadBool. Please refer to the class library chapter for further details.

How do I access the data within an item?

Using an mvItem object (see 'How do I open a data file and read items?'), you need to use its

Data property in order to both retrieve and update its data content. For example, to set the

Text property of a control to attribute 3 of an item, you would use the following code:

txtAddress.Text = OrgItem.Data(3)

The Data property is the default indexer of the mvItem class, therefore you could shorten

the above code to:

txtAddress.Text = OrgItem(3)

In C# (because the language has a less flexibility in its support for properties) you would

have to use the following code:

txtAddress.Text = OrgItem.getData(3);

Core Objects Developer's Introductory Guide - How do I ...?

Page 32

As well as accepting an integer argument, the Data property can alternatively accept the

name of a dictionary item for the file, So, using the previous example, if we assume that

dictionary item 'ADDRESS' is defined to access attribute 3, the following code could also be

used:

txtAddress.Text = OrgItem("ADDRESS")

The Data property can additionally be passed a multivalue and subvalue position to further

refine the piece of item data that is accessed. For example, if we assume that the address

field is MultiValued, the following code would retrieve the 3rd multivalue from the ADDRESS

attribute.

txtAddress3.Text = OrgItem("ADDRESS", 3)

Note, that when data is retrieved using a dictionary name, the mvItem object will return a

value that has been converted (if relevant) and cast as the appropriate data type using the

contents of the dictionary item to guide it in this conversion/casting process. The

exception to this rule is if a return value contains multivalue or subvalue marks, in which

case constituent values will be converted to their appropriate output format but the overall

return value must be cast as a string type.

Retrieving data via attribute position, on the other hand, will always result in an

unconverted (raw item) string value being returned (unless you explicitly supply a

conversion code as an argument to the Data property call).

Updating the data within an item is just as straightforward. For example, to amend

attribute 1 in an item, the following code would be used:

OrgItem(1) = "XYZ Systems Inc."

Or, using a dictionary name:

OrgItem("NAME") = "XYZ Systems Inc."

In C#, you need to use the setData function:

OrgItem.setData(1,"XYZ Systems Inc.");

The same rules (in terms of data conversion and casting) as per retrieving data content via

dictionary name apply to updating data via dictionary name. That is, the following code

would result in attribute 4 being set to string "Feb 13 1961":

OrgItem(4) = "Feb 13 1961"

Core Objects Developer's Introductory Guide - How do I ...?

Page 33

Whereas, the following code would result in attribute "DATEFORMED" being set to the

multivalued database internal date integer value representing date Feb/13/1961 (if the

dictionary item DATEFORMED contains a date conversion/correlative).

OrgItem("DATEFORMED") = "Feb 13 1961"

If you want to update data content via attribute position, but still want data to be stored in

internal format (i.e. input conversion to be performed), you will need to pass a conversion

code as part of the update call. The following examples illustrate storing a date value and a

currency value:

OrgItem(4, "D") = "Feb 13 1961"

OrderItem(3, "MR2") = 2050.75

Finally, the mvItem list object also has an ID property which returns the associated item ID.

How do I write item data back to a file?

Using an mvItem object (see 'How do I open a data file and read items?'), you need to use its

Write method in order for its data content to be written back to the database. For example:

OrgItem.Write

The above line of code will write the current data content of the OrgItem to the associated

file and item ID that were used to retrieve it originally.

If you wish to write an item back to a different ID in the same file, you can supply an

alternative ID as an optional argument to the Write method:

OrgItem.Write("0002")

If you wish to write the item back to different file, you need to use the Write method of the

alternative mvFile object. For example:

OrgArchiveFile.Write OrgItem

Core Objects Developer's Introductory Guide - How do I ...?

Page 34

How do I delete items from a file?

You can delete items from a database file by using either an mvFile object or an mvItem

object.

Using an mvFile object, you need to use its Delete method. For example, to delete item

"0001" from the file which has been opened into variable OrgFile you would use the

following code:

OrgFile.Delete("0001")

With an mvItem object, you must use its DeleteItem method. This will delete the item

indicated by the value of the object's ID property. Note, the object's data content (i.e. the

data content of the object in client memory) will be unaffected by the use of the DeleteItem

method – only the database file item will be deleted.

How do I run my DataBASIC programs?

There are 2 ways of executing DataBASIC code from within your .NET application - the

method you should use depends upon whether the code is within a main-line program or a

subroutine.

If it is a main-line program, you can execute it by using the Execute method of an

mvAccount object. For example, to run program 'BATCHUPDATE' you would use the

following code.

myAccount.Execute("BATCHUPDATE")

In fact, the Execute method can be used to run any command-level statement. You can

also provide arguments to the Execute call that will capture any output produced by the

command and also its return status.

If your code resides in a subroutine, you need to use the CallProg method of the mvAccount

object. This method also allows you to pass multiple (updateable) arguments to the

subroutine. For example, to call subroutine CHECKORDER, passing 2 arguments you would

use the following code:

myAccount.CallProg("CHECKORDER", OrderNo, OrderStatus)

Core Objects Developer's Introductory Guide - How do I ...?

Page 35

It is very important to make sure that the number of arguments that you supply to the

CallProg method exactly matches the number of arguments defined within the subroutine

that you are calling.

How do I select items from a file?

There are a number of ways of selecting data from a file. Below are the most common:

mvAccount.Select

mvFile.Select

mvFile.IndexSelect

mvFile.QSelect

mvAccount.ProgSelect

The first 2 methods allow you to select items from a file in a manner which allows you to

specify selection and sort criteria. The third method (IndexSelect) allows you to select items

from a file using an index which has been associated with the file. The fourth method

(QSelect) allows you to select items based on item IDs held within a specific item within a

specific file. The final method (ProgSelect) allows you to invoke your own DataBASIC

subroutine in order to provide the list of qualifying items IDs for the selection.

Below are examples of each of the above methods being used:

myAccount.Select("SELECT ORGANIZATION BY NAME WITH NAME = ""E]""")

OrgFile.Select("NAME = ""E]""", "BY NAME")

OrgFile.IndexSelect("NAME", "SW", "E")

OrgFile.QSelect("PRODUCT", "RGY954", "4")

myAccount.ProgSelect("MYSUBROUTINE", "HEAVY", PRODUCT)

The first 2 examples result in exactly the same selection of items, i.e. all organizations with

a NAME attribute starting with the letter 'E' sorted in ascending NAME order.

The third example assumes that you have created an index for the file called 'NAME' which

indexes the ORGANIZATION file on sorted NAME attribute. It selects items from this index

starting at the point where NAME starts with the letter 'E' and will stop selecting when a

name not starting with 'E' is encountered.

Core Objects Developer's Introductory Guide - How do I ...?

Page 36

The fourth example assumes that a MultiValued list of supplier codes is held in attribute 4

of all product items. The code example here, thus, reads the list of item IDs from attribute

4 of item RGY954 within the PRODUCT file and then uses this as the basis to assemble a list

of items from the ORGANIZATION file.

The fifth example results in the subroutine "MYSUBROUTINE" being called in order to return

which items from the PRODUCT file are to be selected. The data string of "HEAVY" (this

could be any string data) is passed into the subroutine in order to indicate the context of

the call.

All of the methods that can be used to select items from a file return an mvItemList object.

This object can then be used to access the selected items. The following example

illustrates how to access the first attribute of the 3rd selected item with mvItemList variable

orgItems:

name = orgItems(3)(1)

If you want to iterate through the selected items, you can use the mvItemList’s EOL (end of

list) property:

Do Until orgItems.EOL

 OrgItem = orgItems.ReadNext

Loop

Please refer to the class library chapter for more details on the mvItemList object. Note,

that the ReadNext method (as used above) returns an mvItem object – not just an item ID.

You can then use the ID property of this item if you wish to access its item ID. However, if

you ONLY want the item ID, the ReadNextID method is more efficient.

Finally, all of the Item selecting methods can accept an mvSelect object within their

argument list. The mvSelect object provides a dozen or so properties that provide a high

degree of control over both what data is selected from the server and how the selected data

it is passed back to the client. Some examples of these properties are:

DictionaryList – the list of dictionary derived values required

AttributeList – the subset of attributes required

PreSelection – the command to run before the main selection

RetrievalStyle – the style of data retrieval from the server to client

One of the main reasons for providing the mvSelect object is to allow the developer to

optimize both the volume and timing of data transfer from server to client - this issue

being of prime importance when ensuring that applications are scalable and capable of

being run across a variety of network bandwidths.

Core Objects Developer's Introductory Guide - How do I ...?

Page 37

Please refer to the class library chapter for more details on the mvSelect object.

Core Objects Developer's Introductory Guide - The Data Manager

Page 38

The Data Manager

The Data Manager is an important and useful tool for the application developer. In

order to use Core Objects you will need to learn a little about how to use it.

This Chapter explains each aspect of the Data Manager. It starts by covering those parts

which you will definitely have to use in order to start utilizing Core Objects

(Configuration Database maintenance) and then follows on from this to cover features

designed to improve programmer productivity when designing and developing server-

resident data structures and programs.

Note, the Data Manager is also a classic example of an application making use of the

Core Objects class library. All its database interaction functionality is achieved using the

Core Objects class library. The Data Manager is written using VB.NET.

Data Manager Versions

The Data Manager is provided in two different forms:

• Standalone full version

• Standalone runtime version

The full versions support all the available Data Manager functionality, the runtime

version supports a subset of this functionality and is designed to be distributed as

part of your application deployment rollout when required. Note, the SRDK setup

routine will automatically install a runtime version of the Data Manager as part of

its installation procedure.

Core Objects Developer's Introductory Guide - The Data Manager

Page 39

Running the Standalone Data Manager

The CID setup installation file will place the Data Manager executable

(mvNET.DataManager.exe) in the following directory:

Program Files\BlueFinity\mv.NET\Version4.x\bin

It will also create a shortcut to this program in the Start\Programs\mv.NET menu.

The standalone Data Manager is an MDI application. When you start it up, the left

hand side of the main MDI form displays a treeview list containing a number of

entries; this is known as the Data Manager Explorer. An example is shown in the

following screenshot

Diagram 2a : The Data Manager Explorer

The Explorer tree is used like any normal treeview control, with most of its nodes

supporting context sensitive right-click popup menus.

Each of the node types is explained in the following sections.

Core Objects Developer's Introductory Guide - The Data Manager

Page 40

Explorer Nodes : Overview

The higher level nodes of the Explorer tree allow you to maintain the contents of

the Configuration Database. As you move down through the hierarchy of the

Explorer nodes, you are able to establish database sessions and maintain the

contents of MultiValued databases. The following section explains the

Configuration Database in detail

Most of the nodes within the Explorer treeview support right-click popup context

menus. These allow you to perform a wide variety of tasks. Each of the explorer

node sections below explain the options available within these popup menus.

The Configuration Database

The Configuration Database (CDB) is a vital aspect of Core Objects. It holds the

information which allows Core Objects to be aware of which MultiValued systems

are available for connection and how to connect into these systems.

The CDB is a collection of directories and files which, by default, will be located in

in CommonApplicationData. On Vista, Windows7 and Server2008 systems,

CommonApplicationData maps to physical folder:

C:\ProgramData

On all other platforms, CommonApplicationData maps to physical folder:

C:\Documents and Settings\All Users\Application Data

Note, within Windows Explorer, ProgramData may be hidden from view. However,

you can browse to it explicitly using the top address bar input box within the

Windows Explorer window.

However, if you wish to share a configuration database amongst a population of

users or developers, you can create a file in the above location called

ConfigurationPath which points to the actual location of the CDB. The

ConfigurationPath file should be a simple text file holding one line of text; this

one line should contain the fully qualified path of the location of the CDB. Note,

the path within the ConfigurationPath file should NOT include the '\Configuration'

at the end; i.e. it should be the path of the folder containing the 'Configuration'

folder.

Core Objects Developer's Introductory Guide - The Data Manager

Page 41

Also note that the constructor of the mvEnvironment class also allows you to

specify the location of the CDB.

An alternative approach to specifying the location of the CDB is to supply the

address and port number of the Session Manager. The Session Manager is

installed as part of the CID setup and SRDK setup routines. The syntax of the

string which needs to be supplied via either the contents of the ConfigurationPath

or via the mvEnvironment constructor is:

Address:Port e.g. Pluto:10013

Where Address is either the IP address or resolvable system name of the server

which is hosting the Session Manager and Port is the port number on which the

Session Manager is listening. These settings can be maintained via the Data

Manager, see the Configuring Session Management section in the The Session

Manager chapter.

Within the CDB, there are 4 main categories of information:

Server Profiles

Account Profiles

Login Profiles

Session Management Profile

Server Profiles contain most of the information which allows Core Objects to

contact and connect into a MultiValued database system. There should be one

server profile for every database installation that you wish to access.

Within a Server Profile you may define many Account Profiles; one for each account

that you wish to access via mv.NET within the specified server. An Account Profile

holds several pieces of data that can be used in establishing a connection to the

account along with various pieces of control data allowing the behavior of session

pooling and temporary data housekeeping to be controlled.

Login Profiles provide a means of associating a logical name with a server/account

pairing. This allows you to avoid ‘hard coding’ server/account names into your

application, which is important especially to software houses developing

applications for resale.

The Session Manager Profile allows you to control the behavior of the Session

Manager. See the Session Manager chapter for full details on this topic.

Core Objects Developer's Introductory Guide - The Data Manager

Page 42

The following sections take you through the creation and maintenance of all these

profiles.

Explorer Node : Servers

The Servers node of the explorer contains one node per server profile. The right-

click popup context menu of this node contains the following options:

Open

Expands the Servers node to allow the list of server profiles to be viewed

Add Server Profile

Allows a new server profile to be created. See section Creating a Server Profile.

Paste Server Profile

Allows a new server profile to be created based on a previously copied profile. See

menu option Copy Server Profile within the Server node context menu.

Explorer Node : {server profile name}

Each server profile node of the explorer contains an Accounts node (which

contains the list of account profiles defined within this server profile) and a node

for opening up a server console window onto the server. The right-click popup

context menu of this node contains the following options:

Open

Expands the server profile node to allow the list of sub-nodes to be viewed

Edit Server Profile

Open the server profile maintenance window.

Rename Server Profile

Allows the name of the server profile to be changed.

Copy Server Profile

Places the server profile definition onto the Explorer’s clipboard ready for pasting.

Core Objects Developer's Introductory Guide - The Data Manager

Page 43

Cut Server Profile

Places the server profile definition (in cut mode) onto the Explorer’s clipboard

ready for pasting.

Delete Server Profile

Removes the server profile from the configuration database, removing all

constituent account profile definitions.

Explorer Node : Accounts

The Accounts node contains a node for each account profiles defined within the

parent server profile. The right-click popup context menu of this node contains

the following options:

Open

Expands the Accounts node to allow the list of account profiles to be viewed

Add Account Profile

Allows a new account profile to be created. See section Creating an Account

Profile.

Paste Account Profile

Allows a new account profile to be created based on a previously copied profile.

See menu option Copy Account Profile within the account node context menu.

Explorer Node : Logins

The Logins node of the explorer contains one node per login profile. The right-

click popup context menu of this node contains the following options:

Open

Expands the logins node to allow the list of login profiles to be viewed

Add Login Profile

Allows a new login profile to be created. See section Creating a Login Profile.

Core Objects Developer's Introductory Guide - The Data Manager

Page 44

Explorer Node : {login profile name}

Each login profile node of the explorer has a right-click popup context menu

containing the following options:

Edit Login Profile

Open the login profile maintenance window.

Rename Login Profile

Allows the name of the login profile to be changed.

Copy Login Profile

Places the login profile definition onto the Explorer’s clipboard ready for pasting.

Cut Login Profile

Places the login profile definition (in cut mode) onto the Explorer’s clipboard ready

for pasting.

Delete Login Profile

Removes the login profile from the Configuration Database.

Explorer Node : Server Console Window

The server console window node allows you to open a server console window on

the parent server. The right-click popup context menu of this node contains the

following options:

Open Server Console Window

Displays a window asking you to confirm the server connection address and then

opens the console window. Please refer to the section Server Console Window for

details on what you can do within a server console window.

Explorer Node : {account profile name}

Each account profile node of the explorer contains a series of sub-nodes

representing the contents of the associated database account. These sub-nodes

can only be displayed once a login session onto the account has been established –

Core Objects Developer's Introductory Guide - The Data Manager

Page 45

see menu option Login below. The right-click popup context menu of this node

contains the following options:

Login

Initiates a login onto the account. The section Creating a Server Profile contains a

description of the login process.

Logout

Terminates the currently active database session.

Edit Account Profile

Open the account profile maintenance window.

Rename Account Profile

Allows the name of the account profile to be changed.

Copy Account Profile

Places the account profile definition onto the Explorer’s clipboard ready for

pasting.

Cut Account Profile

Places the account profile definition (in cut mode) onto the Explorer’s clipboard

ready for pasting.

Delete Account Profile

Removes the account profile from the configuration database.

Explorer Node : Session Manager Settings

This node allows you to maintain the settings of the Session Manager on the

system. Note, this is only relevant if you have installed the Session manager

module. The right-click popup context menu of this node contains the following

option:

Maintain Settings

Displays a window allowing you to activate/deactivate session management on this

system and also allows you to specify the address of the system which is hosting

Core Objects Developer's Introductory Guide - The Data Manager

Page 46

the session manager service . Please refer to the Session Manager chapter for

further details on maintaining these settings.

Creating a Server Profile

To create a new server profile, select the Add Server Profile option from the Servers

context menu. This option will prompt you for a profile name. After entering a

name, the following window will be displayed allowing you to enter the details of

your new profile:

Diagram 5b : The Server Profile Maintenance Window

The various fields on this form are explained below:

Database type : This allows you to specify the 'flavor' of MultiValued platform that

this database installation represents.

Host operating system : This allows you to specify the operating system running

on the server.

Connection type : This allows you to specify the type of connection that needs to

be established with the server. The options available here will vary depending on

the Database type selected.

Core Objects Developer's Introductory Guide - The Data Manager

Page 47

Connection address : This should be set to the address of the server. This can be

either an IP address or a resolvable system name.

Port : This allows you to (optionally) specify the port of the listening service for the

specified connection type. See next section for more details. For some connection

types this field is not required and will be hidden.

Display connection monitor on startup : If this field is ticked, a connection monitor

window will be automatically displayed when a new connection to this server is

established. Note, the Session Monitor window must be open for this to occur.

Send keep alive tick : This input field allows you to indicate that traffic is to be

automatically generated between client and server in order to avoid session

inactivity timeout from occurring. By specifying a non-zero number in this field, a

small number of characters will be transmitted from client to host every so often in

order to prevent the communications link from timing out.

The Open Server Console Window button in the top section of this window will

open a terminal emulation window onto the server. Please refer to the next

chapter for more details.

Connection Port Specific Details

Below is a table detailing the way in which the Port field should be used depending

on the selected connection type.

Connection Type Field Description

IP Port The port number of the Telnet listener. Defaults

to 23 if left blank

Or

The port number of the SSH listener, prefixed by

the letters "ssh", e.g. "ssh22" indicates an SSH-

based connection on port 22.

UniObjects Service The name of the UniObjects listening service.

Defaults to 'udcs' for Unidata and 'uvcs' for

UniVerse if left blank. Note, the 'Port' prompt

changes to a 'Service' prompt for UniObjects-

based definitions.

SAC Port The name of the UniVision service. Defaults to

Core Objects Developer's Introductory Guide - The Data Manager

Page 48

'UniV' if left blank.

D3ODBC Port This field can contain 3 discrete pieces of

information, each separated by a colon :

VM_name:Port:D3_version

Where VM_name is the name of the D3 virtual

machine; Port is the port number on which the

D3 ODBC service is listening and D3_version is

the version classification of the D3 server.

If this field is left blank, the follow default value

is used:

Address:1603:754

For Windows hosted D3 servers, Address is set to

the same value as the Connection address field;

for UNIX-based systems, it is set to "pick0".

If only one value is entered into this field, if it is

non-numeric it is assumed to be the virtual

machine name - otherwise it is assumed to be

the port number.

Defining Connection Negotiations

Within the server profile definition form, if you select a connection type (for

example ‘IP’) that requires a negotiation sequence to be followed in order to gain

access to the database account, an extra region of input fields will be presented in

the first tab of the form:

Core Objects Developer's Introductory Guide - The Data Manager

Page 49

Diagram 5c : Connection Negotiation Fields

The various fields on this form are explained below:

Send/Wait for: These input fields allow you to specify the character strings to be

sent to the server in order to gain access to the required account. After each send

string you may specify a character sequence that must received within the stream

of characters from the server before sending the next send string. In such a way

you are able to correctly synchronize the transmission of send strings to the host.

Within the Send and Wait for input fields you may include various special 'marker'

strings:

{account} – will insert the Account field from the relevant account profile. When

you logon to a server you will always need to specify both a server and an account

profile name. The account profile definition contains an account field – it is the

value of this field which is inserted in place of the {account} marker at run time.

{user} – will insert the User field from the relevant account profile.

{password} – will insert the Password field from the relevant account profile.

{password#2} – will insert the Password#2 field from the relevant account profile.

{prompt#1} – will insert the Prompt#1 field from the relevant account profile.

Core Objects Developer's Introductory Guide - The Data Manager

Page 50

{prompt#2} – will insert the Prompt#2 field from the relevant account profile.

{sleep} – will cause the connection negotiation process to sleep for 1 second. The

word sleep may be followed by a space and then an integer number to sleep for

more than one second; e.g. {sleep 3} will cause a sleep for 3 seconds.

~n – will insert character n; e.g. ~13 will insert a carriage return character.

Note that the Wait for strings are case sensitive.

The send/wait for pairings need to navigate the logon process down to command

level within the target account, at which point the (final) send string of

'MVNET.START~13' should be sent with no wait for after it. This command starts

the mv.NET IP listener process, after which, mv.NET will take over the negotiation

process and eventually place the listener into a 'ready' state.

Timeout period: Allows you to specify the maximum number of seconds that a

Wait for string will be waited for. If a Wait for string does not appear in the

received characters buffer within this number of seconds after its associated send

string has been transmitted, the login process will be abandoned.

It is, obviously, important to get the send and wait for strings absolutely correct,

otherwise Core Objects will get lost part way through the connection process and

will fail to establish a link to the server. To that end, there is a button on the

server profile maintenance window named ‘Open Server Console Window’.

Clicking this button will launch a simple terminal emulation window which,

amongst other things, will allow you to observe the exact sequence and character

content of the series of prompts and messages that the MultiValued system

displays during the connection process.

The spin up/down button in the bottom right of this window allows you to insert

and remove lines mid-way within the send/wait pairs. The arrow-head in the left-

hand edge of the tab indicates the "current" row.

Connection Control

At the foot of the connection negotiation tab is an area which allows you to specify

settings that control the creation of new connections to this server:

Core Objects Developer's Introductory Guide - The Data Manager

Page 51

Diagram 5d : Connection Control Settings

The first 3 input fields allow you control the suspension of new connections to this

server based on the rate of new connection attempt failures.

The last 2 input fields allow you to restrict the rate of new connection attempts

based on a fixed allowance for a specified period of time.

The purpose of these input fields is to allow you to control the behaviour of the

Session Manager in situations where a database server is encountering network

connection problems or where it is under a high degree of stress. In such

situations it is common for connections to the database server to become unstable

and so the above settings allow you to restrict the impact that mv.NET has on the

database server. That is, in such situations, usually the last thing that the

database server needs is extra workload associated with trying to establish new

connections continually.

Communication Characteristics

In addition to specifying connection negotiation details, if a connection type is

negotiated a second tab allowing the definition of communication characteristics:

Core Objects Developer's Introductory Guide - The Data Manager

Page 52

Diagram 5e : Communication Characteristics

The various fields on this form are explained below:

Client to Host: These input fields allow you to specify the nature of the

communications link to the server in terms of data flow from client to server

(host). The check boxes allow you to define 7/8 bit characteristics, the chunk size

input field allows you to specify the maximum number of bytes that may be

transmitted in a single uninterrupted burst to the host.

Host to Client: These input fields allow you to specify the nature of the

communications link to the server in terms of data flow from the server (host) to

the client system. The check boxes allow you to define 7/8 bit characteristics, the

chunk size input field allows you to specify the maximum number of bytes that

may be transmitted in a single uninterrupted burst from the host.

The following table describes the effect of ticking each checkbox

Checkbox Name Effect

No character conversion All characters are transmitted without any form of

conversion being applied.

7-bit conversion of system

delimiters

All characters in the ASCII range 250-255 are

converted into 7-bit forms.

Core Objects Developer's Introductory Guide - The Data Manager

Page 53

7-bit conversion of control

characters

All characters in the ASCII range 1-31 are

converted into 7-bit forms.

7-bit conversion of high-

order bit characters

All characters in the ASCII range 128-255 are

converted into 7-bit forms.

Note, the following scenarios may require the use of character conversion:

• situations where IP connection types are being affected by stty and other

terminal control settings on the database host

• where the Windows system hosting the mv.NET Session Manager service is

configured to use an Eastern European or Slavic (Cyrillic alphabet) based

language setting

• NLS support is being used on a U2 database

Finally, the "Simple line-based input support only" checkbox allows you to indicate

whether the database platform only supports old-technology line-based input

capabilities. This should usually be left unticked unless you have specific reasons

to believe that it applies to your particular database server.

Creating an Account Profile

Each server profile holds the definition of the main aspects controlling how Core

Objects clients locate and connect into a MultiValued database server. However,

this definition is not complete, as it needs augmenting with the details of a

particular account on the server so that an account specific connection can be

established. The Account Profile is the entity which holds this extra information

and there may be several account profile definitions within a single server profile -

each representing a different account or application on the server.

An account profile provides the means to define 2 main areas of information.

Firstly, account specific logon settings and secondly, account specific session

pooling and housekeeping settings.

To create a new account profile, select the Add Account Profile option from the

Accounts context menu. This option will prompt you for a profile name. After

entering a name, the following window will be displayed allowing you to enter the

details of your new profile:

Core Objects Developer's Introductory Guide - The Data Manager

Page 54

Diagram 5f : The Account Profile Maintenance Window

The various fields on this form are explained below:

Login Parameters
This group of input fields allows you to specify data that can be used to control

Core Objects' login process to correctly connect to the required account. The

values of these 6 fields can be inserted into connection negotiation send and wait

for strings at run-time using special markers – see previous section Defining

Connection Negotiations.

These fields, combined with the server profile definition, thus provide a complete

definition to mv.NET of how to connect into a specific account on a specific server.

Core Objects Developer's Introductory Guide - The Data Manager

Page 55

The table below lists how these 6 fields can be utilized for the variety of

connection types which may be used within a server profile:

Connection Type Description

IP The 6 Login Parameters fields may be inserted into the send

and wait for strings of a server profile's connection

negotiation definition using the special markers {account},

{user}, {password}, {password#2}, {prompt#1 and {prompt#2}.

UniObjects (UniVerse and UniData only) The Account field should be set

to the path of the directory holding the required account. The

User field should be set to the Windows/Unix user that is to

be used for the login process. Password should be set to the

user's password.

QMClient (QM only) The Account field should be set to the required QM

account. The User field should be set to the Windows/Unix

user that is to be used for the login process. Password should

be set to the user's password.

SAC (UniVision only) The Account field should be set to the name

of the database account that is to be connected into.

D3ODBC (D3 only) The Account field should be set to the name of the

database account that is to be connected into. It is assumed

that name of the account holding the mv.NET server-side

routines is "MV.NET". If this is not the case, the actual name

of the account can be supplied at the end of the account

name, separated by a colon, e.g.

SOP:mvNET

Where "mvNET" is the name of the account into which the

server-side code of mv.NET was downloaded.

Session Pooling
This group of input fields allows you to specify session pooling settings for this

particular account. Please refer to the Configuring Session Management section

within the Session Manager chapter for details on how these fields may be used.

Core Objects Developer's Introductory Guide - The Data Manager

Page 56

Housekeeping Settings
The second tab on the account profile maintenance window allows you to define

the server-side housekeeping activities that mv.NET can perform, as shown below:

Diagram 5g : Server-side Housekeeping Settings

All housekeeping activity is coordinated by the session manager service and thus

the frequency of housekeeping is set at the session manager level. This can be

done by double-clicking the Session Manager Settings node within the Data

Manager treeview. At the foot of the resulting settings window you can specify

both the timing method for housekeeping (either to be run every x minutes or at a

specific time each day) and the interval/time setting itself.

The account profile housekeeping settings allow you to control when temporary

data on the server is to be deleted, as well as controlling the default size of

temporary files created automatically by mv.NET.

The Purge select lists setting allows you to define when server-side select lists are

to be deleted. When a select list is created by mv.NET as part of its internal activity

(which will, of course, have been triggered by some application request) it is given

a timestamp. When the housekeeping process executes, it examines the

timestamps of all select lists created by mv.NET for this account and will delete any

that are older than the age specified within the account profile.

Core Objects Developer's Introductory Guide - The Data Manager

Page 57

The Purge read images setting allows you to define when optimistic lock read

images taken on the server are to be deleted. When an item is locked in optimistic

mode a copy (read image) of the current item is placed into the

MVNET.READIMAGES file. Each read image is given a timestamp so that when the

housekeeping process executes it examines the timestamps of all read images for

this account and will delete any that are older than the age specified within the

account profile.

The Delete temporary session files setting allows you to define when the

temporary files for stateless connections are to be deleted. If an application

passes an application GUID (session ID) into the connection request call, a

dedicated temporary file will be created for that session ID so that information can

be persisted for that session across invocation boundaries. mv.NET keeps track of

when a session ID last contacted the server and if, when the housekeeping process

executes, it finds that a session has not contacted the server for a period greater

than that specified within the corresponding account profile the temporary session

file will be deleted.

Other Account Profile Settings
The third tab on the account profile maintenance window allows you to define

various miscellaneous account profile settings, as shown below:

Diagram 5h : Other Account Profile Settings

Core Objects Developer's Introductory Guide - The Data Manager

Page 58

The Default command timeout period field allows you to specify the default length

of time (in seconds) that an application will wait for a response from the server

after issuing a request. This may be overridden programmatically using the

mvAccount.CommandTimeoutperiod property.

The File schema caching checkbox allows you to indicate whether you wish file

schema data to be cached by the client to reduce round-trips to the server. This

option should only be activated if the schema is not being actively

developed/changed on a regular basis. Note, this option will only come into effect

when new sessions are established. Also note that the Session Monitor window

allows you to manually clear the schema cache without terminating a session.

The Connection traffic logging checkbox allows you to activate the logging of all

messages passing between client and server for any sessions established using

this account profile. Session logs are created in the following folder:

C:\Documents and Settings\All Users\Application

Data\BlueFinity\mv.NET\Version4.0\Message Area\Live\Connections

Note, on Vista, Windows7 and Server2008 systems C:\Documents and Settings\All

Users\Application Data is known as C:\ProgramData

Within this folder will be one folder per session log. The folder name will reflect

the session id, the profile names used and also the date and time the log was

produced. Within each session log folder will be multiple files holding a record of

all message traffic.

The Delete temporary file on disconnect checkbox allows you to indicate whether

the port-based temporary file automatically created by mv.NET at the start of a

session (if it does not already exist) is to be deleted when a session terminates.

The Gather session utilization statistics checkbox allows you to indicate whether

the Session Manager should record statistical information relating to the usage of

sessions connected using this profile. This statistical information can then be

viewed using the Statistical Analysis tool installed as part of the CIDSetup routine -

a shortcut to which is created on mv.NET's Windows Start menu.

The Use mv.NET 'soft' locks checkbox allows you to indicate whether soft locking

should be used for all clients connecting via mv.NET to this account. When soft

locking is activated it results in mv.NET operating the pessimistic item lock table

for an application as opposed to the O/S. It is typically used in situations where

Multiple Session Sharing has been activated for an account profile which will, by

Core Objects Developer's Introductory Guide - The Data Manager

Page 59

definition, result in multiple clients potentially sharing the same physical database

process (PIB); thus rendering traditional READU item locking as unusable. It should

be noted that soft locking should only be used when mv.NET is the only method

being used to lock data. It will not ensure lock integrity with other applications

using traditional READU item locking.

Please refer to the mv.NET Soft Locks section within the Data Manager chapter of

this Guide for more information on soft locks.

The Automatically expand Files node in Data Manager checkbox allows you to

indicate that when you connect into an account within the mv.NET Data Manager

utility, the list of available files is to be automatically assembled and displayed.

You should only tick this box if you are sure that assembling the list of files will

not be a time-consuming process.

Creating a Login Profile

A login profile allows you to assign a logical name to a server and account profile

pairing. The main reason for providing this capability is to encourage developers

to avoid hard-coding the names of server and account profiles into their

application. Therefore, you should use login profiles as the means of identifying

the database you wish to connect to whenever possible.

To create a new login profile, select the Add Login Profile option from the Logins

context menu. This option will prompt you for a profile name. After entering a

name, a window will be displayed allowing you to select the relevant server and

account profile names.

An alternative form of the login profile is one which is linked to a gateway profile.

This allows logins to be processed by a remote gateway system. Please refer to

the Gateways chapter for more information on this topic.

Core Objects Developer's Introductory Guide - The Data Manager

Page 60

The Server Console Window

As well as providing a basic terminal emulation facility, the server console window

allows you to perform several other important tasks:

• Server component download

• Demo SOP account download

• Account enabling

The server component download and account enabling actions must be performed

to complete the setup of Core Objects. The download of the demo SOP account is

optional.

Opening a Server Console Window
Under each server profile is a node called ‘Server Console Window’. Double-

clicking this node will result in a window allowing the address and port of the

telnet listener for that server to be entered. Upon clicking OK in this window, a

Server Console window will be displayed. There is also a button within the server

profile maintenance window called ‘Open Server Console Window’ – clicking this

button will also result in a Server Console window being displayed (using the

address and port entered within the server profile definition).

Terminal Emulation
The black area within the Server Console window represents a terminal emulation

region. The only emulation mode supported by the Server Console is VT220.

Using the emulation window, you may logon to the server and perform any of the

command level activities supported by the MultiValued platform.

Server Component Download
Before a client application can perform any form of communication with the

MultiValued server, you must download the mv.NET server components onto your

database system. This, basically, involves the download, compile and catalog of

60 or so DataBASIC routines onto the server, along with the creation of a handful

of control files. To do this, you will need to follow the following series of steps:

1. Using either the Server Console window or another terminal connection,

create a new account on the system called ‘MV.NET’ or similar. This

account will be referred to hereon as the ‘mv.NET account’.

Core Objects Developer's Introductory Guide - The Data Manager

Page 61

2. Within the Server Console window, logon to the mv.NET account and

make sure that you are at the command prompt.

3. Select the console window’s menu option: Action\Download Server

Components. A extra region will be displayed at the foot of the window

containing the following check boxes:

• Force use of $INCLUDEs – this indicates that within the source code

downloaded to the server, a ‘$’ symbol will be prefixed to any

INCLUDE statements. This is only needed for a small number of

legacy MultiValued platforms.

• Suppress use of named common – this prevents the mv.NET common

area from being ‘named’. You should only use this option after

consulting BlueFinity.

• Use extended delay after compile action – use this option if your

MultiValued server takes a prolonged period (> 2 seconds) to

compile/catalog programs. If the download process freezes part way,

it is likely that you will need to use this option.

After ticking the required options, click the Start button to commence the

download process. You will be asked to confirm the database type.

At the end of the download process Windows Notepad will be invoked to display a

trace of the download action. This trace will have been saved to disk, so you may

close this window.

Account Enabling
Once you have downloaded the server components into the mv.NET account, you

need to ‘enable’ each of the data/application accounts that you wish to access via

mv.NET. This ‘enabling’ action simply refers to the creation of a handful of file (or

‘Q’) pointers with the data account back to the mv.NET account, and the

cataloging of the downloaded DataBASIC routines (if necessary).

To enable an account, navigate your way to command level within the account and

then select the Server Console’s menu option: Enable Application Account. The

option will ask you confirm the database type and that you are at command level

within the account and will then perform a series of actions resulting in the

execution of a program called ‘MVNET.ENABLE’, which check to make sure that the

account is ready for mv.NET usage. A message saying ‘Account structure OK’

should be displayed at the end of its execution.

Core Objects Developer's Introductory Guide - The Data Manager

Page 62

SOP Demo Account Download
To run some of the sample applications provided with Core Objects, you will need

to download a demo data account onto your MultiValued server. Before doing this,

you will need to create a new (empty) account on your MultiValued server called

'SOP', or similar. This will be referred to hereon as the 'SOP account'.

Within the Server Console window, logon to the SOP account and make sure that

you are at the command prompt. Select the console window’s menu option:

Action\Download Demo SOP Account. Click the Start button to begin the

download.

At the end of the download, a data generator program will be invoked on the

MultiValued server within the SOP account. You need to complete the on-screen

prompts in order to generate data within the files that the download process will

have created.

Testing a Connection

Once you have created server and account profiles and also downloaded the server

components onto your MultiValued server, you are ready to test whether the Data

Manager (and hence you own application) is able to successfully connect into the

account.

To run a connection test right-click an account profile node with the Data Manager

explorer tree and select the Test Connection menu option. A Connection Test

window will then be displayed, together with a series of trace messages.

A successful connection will results in the message 'AppGUID=[…] Port=[…]' being

displayed at the foot of the test window.

Close the connection test window when you have finished.

If you experience difficulties getting the connection test to work, please contact

your mv.NET support representative.

Core Objects Developer's Introductory Guide - The Data Manager

Page 63

Connecting into an Account

After successfully testing your connection you are then ready to open a session

within the Data Manager to view and possibly amend details within that account.

To open a database session double-click an account profile node within the

explorer tree. This will expand the account node and present a list of sub-nodes

as follows:

Master Dictionary allows access to the contents of the MD/VOC of the account

Files allows the list of files within the account to be viewed, along

with subsequent access to these files

Queries allows access to the predefined queries within the account.

These queries are defined using the Data Manager

Viewing the List of Available Files

The first time that you expand an account profile's Files node you will presented

with the following window:

Diagram 5i : File List Assembly Confirmation Window

This window allows you to specify how the Data Manager will assemble the list of

file names. The first option will result in mv.NET scanning the MD/VOC of the

Core Objects Developer's Introductory Guide - The Data Manager

Page 64

account to try and deduce which entries refer to files (and will also scan the

dictionary of all such files to try and determine what data levels are present). This

is clearly a potentially time-consuming task and you should only select this option

if:

a) The MD/VOC size is not excessive

b) The MD/VOC doesn't contain entries to files which are not accessible

and will thus, possibly, cause the server process to crash. An example

of this might be the presence of remote file pointers to a system which

is not available.

The second option allows you to manually enter the names of the files that you

wish to have listed within the explorer Files node. If you select this option, you

will be presented with the following screen:

Diagram 5j : Files List Entry Window

The first tab on the above form contains a text box into which you can enter file

names exactly as needed to open the files within DataBASIC. The second tab

contains a checked ListBox which allows you to select which file names you

require, however, to populate this checked ListBox with file names, mv.NET,

Core Objects Developer's Introductory Guide - The Data Manager

Page 65

obviously, must scan the MD/VOC, therefore, it will present a prompt asking you

to confirm that you wish to do this.

On clicking the Accept button, the file names that you enter/select within this

form will be saved in a special item within the account's MD/VOC with an item ID

of '{MVNETFILESVISIBLE}'. This is called the Visible Files List (VFL).

Whenever Core Objects is asked to provide the list of files within an account, the

first thing that it checks for is the presence of the VFL item in the account's

MD/VOC. If it finds the VFL item, it assumes that it contains the complete list of

file names and returns this as the final result. If it doesn't find the VFL item, it will

scan the MD/VOC for files.

It is important to realize that the VFL item does NOT contain the list of files that

may be accessed from with your application – your application can open and

access any file that you can access from command level within the account. What

is does contain is the list of files names that will be returned by the FileList

method of the mvAccount class - this is the method which the Data Manager uses

to obtain the file list for an account. Please refer to the Class Library Overview

chapter and the on-line help for more details on the FileList method of the

mvAccount class.

If you initially manually enter a list of files names you may edit this list at a future

point by right-clicking the Files node with the explorer tree and selecting the

Maintain Visible Files List option.

Core Objects also has the concept of a Hidden Files List (HFL), which, if the VFL is

not present, will be used to exclude names found during the MD/VOC scanning

process. The VFL takes precedence over the HFL.

Accessing Alternative Dictionaries

If you have a situation where several files utilize a shared dictionary, you need to

use the following syntax within the visible file list:

{dictfile} {datafile}

Where {dictfile} is the name of the file whose dictionary portion is to be used

and {datafile} is the name of the file whose data portion is required (note the

space separating the 2 names).

Core Objects Developer's Introductory Guide - The Data Manager

Page 66

Note, if necessary, both {dictfile} and {datafile} can point to a specific data

portion of a file by using the syntax:

{name},{data}

Where {name} is the name of the file and {data} is the name of the specific data

portion.

Working with Files

Once you have a series of file names listed within the explorer tree you can

perform a variety of tasks on these files. All these possible tasks are either listed

on the right-click context menu for a file name or on the context menu for a data

portion name within the file. You may view the list of data portions for a file by

expanding the relevant file name node within the explorer tree. The following

sections cover the more complex of these context menu options.

The Data Manager Toolbar

The Data Manager supports a toolbar that is used throughout the product. In the

standalone version of the Data Manager the toolbar is at the top of the MDI form;

in the addin version of the Data Manager the toolbar sits in the toolbar area of

Visual Studio.

The functions available via the toolbar are as follows:

 Save Update Saves the current amended details.

 Save As Saves the current details under an alternative name/ID.

Cancel Update Cancels the current update action, losing any amendments

made since the initial read or last save.

 Select Items Allows a selective list of items to be assembled. This

button is only available within the Item Maintenance form.

 Count Items Allows a selective item count to be performed. This

button is only available within the Item Maintenance form.

 Process Items Allows multiple items to be processed (updated) in a

common manner. This button is only available within the

Core Objects Developer's Introductory Guide - The Data Manager

Page 67

Item Maintenance form.

 Format Allows the current program item's code to be formatted

(indented). This button is only available when editing

program code within the Item Maintenance form.

 Compile/Catalog Allows the current program to be compiled and cataloged.

This button is only available when editing program code

within the Item Maintenance form.

 Run Query Allows the query currently being maintained to be

executed.

 Resize All Rows Forces the height of all rows within the Item Maintenance

window's grid to be reset back to the default height.

This button is only available within the grid-style view of

the Item Maintenance form.

 Select Dictionary

Fields

Allows the list of dictionary fields which are to be

displayed within the Item Maintenance window grid to be

specified. This button is only available within the grid-

style view of the Item Maintenance form.

 Show/Hide

Dictionary

Columns

Allows the display of dictionary fields within the Item

Maintenance window's grid to be turned on and off. This

button is only available within the grid-style view of the

Item Maintenance form.

Maintaining the Schema of a File

The Maintain File Schema option from a file's explorer tree context menu displays

the Data Manager's schema maintenance window. This form allows you to

maintain the contents of a file's dictionary – both the native dictionary items and

the mv.NET's extended definition items. For further information on extended

dictionary definitions please refer to the chapter dedicated to this topic.

The Data Manager file node's right-click context menu contains a "Generate

Extended Dictionary" option which can be used to automatically generate extended

dictionary items based on the native dictionary definitions. You can then use the

schema maintenance window to fine-tune these initial definitions as necessary.

Core Objects Developer's Introductory Guide - The Data Manager

Page 68

The schema maintenance window presents a grid listing all of the dictionary

names recognized within the dictionary of a file. Below the grid is shown both the

native and extended definitions for the currently selected dictionary name.

The Extended Dictionary Definitions chapter and the mvSchemaItem section within

the Class Overview chapter cover the content of extended dictionary definitions in

detail.

Within this maintenance form you may add, amend or delete schema items as

required.

Schema Item Visibility
Within the main grid of the schema maintenance window there is column titled

'Visible' – this column allows you to indicate whether a specific dictionary field is

to be included in the list of schema definitions returned when the schema of a file

is loaded within Core Objects. Specifically, it allows you to control the contents of

the '{MVNETDICT}' item within the dictionary of the file. The paragraphs below

explain this process.

When the FileOpen method of the mvAccount class is used you may specify that

the schema of the file is to be retrieved. Alternatively, the Load method of

mvFile.Schema (this returns a reference to an mvSchema object) can be used to

load the schema at a later stage.

When a schema is loaded mv.NET first looks in the dictionary of the file to see

whether an '{MVNETDICT}' item exists. If it does, it will only retrieve the names

listed in this item, which thus means that the content of an mvFile.Schema will be

(potentially) restricted to a subset of items. This is useful if you wish to restrict

the dictionary names that are presented to the end user.

If the '{MVNETDICT}' item does not exists, all dictionary items within the file will be

represented in the returned schema.

If you are using the MVNET.SCHEMA file to store extended dictionary items, the

'{MVNETDICT}' item will be stored in this file as opposed to the dictionary if the

file. See section on storing extended dictionary items for more information on this

topic.

Core Objects Developer's Introductory Guide - The Data Manager

Page 69

File Properties

The Properties option from a file's explorer tree context menu displays the Data

Manager's General Properties maintenance window. This form allows you to

maintain a range of mv.NET specific properties for the file as whole.

Diagram 5k : The File General Properties Window

The Item content type field allows you to specify the type of data held within the

file – Data, Dictionary or Programs.

Core Objects Developer's Introductory Guide - The Data Manager

Page 70

The Automatically prompt… checkbox allows you to indicate whether you will be

automatically prompted for selection criteria when you choose to enter the grid-

based data view within the Data Manager's Item Maintenance form. If ticked, this

will prevent the grid view from automatically selected all items from the file -

which do not want to do if the file contains a very large number of items (greater

than 20,000).

The Description field allows you to enter a description of the purpose/content of

the data held within the file.

The Auto Item ID Generation area allows you to specify whether/how automatic

numeric item ID generation for new items within the file is to be performed.

There are 2 options here. "Fully automatic" will result in mv.NET generating

unique numeric IDs for new items. In this scenario the item indicated by the file

name, dictionary usage and item ID fields within the Properties form is

automatically used to store the last number issued. The attribute prompt allows a

specific attribute position to be used if you wish to store multiple auto ID counts

in the same item. The current value of the auto item ID can also be viewed and

amended using the edit field in the bottom left of the Auto ID area. If you edit the

current value, you need to click either the "Save" button alongside the edit field (to

save the value without leaving the Properties window) or the overall Accept button

of the form.

If "Custom subroutine assisted" is selected, then a subroutine which you create will

be called to supply new item IDs. This subroutine must conform to a pre-defined

calling signature as documented below:

SUBROUTINE subroutinename (FILENAME, ITEMDATA, NEWID, ERRORMESSAGE)

Where:
FILENAME the name of file to contain the new item. This allows a single

subroutine to service new ID requests for multiple files if desired.

ITEMDATA the data relating to the new item (if any is available at the time).

NEWID needs to be assigned the value to be used as the new item's ID.

ERRORMESSAGE needs to be assigned a value describing any errors that are

encountered during the execution of the subroutine.

The .NET Environment Name Mappings area on the Properties form allows you to

specify the names (singular and plural) by which the file will be known within the

.NET environment and also the names of the normalized tables that will be

Core Objects Developer's Introductory Guide - The Data Manager

Page 71

produced as a result of the Adapter Objects dynamic normalization process. This

name is used by mv.NET's Adapter and Solution Objects component sets.

Each MultiValued and sub-value group defined within the mv.NET schema for the

file is represented by a row within the Group Data Names grid. This information is

used by mv.NET's Adapter and Solution Objects component sets. For Adapter

Objects, you can define the Table name of the ADO.NET DataTable that will be

created to hold each MultiValued/subvalued group data. You are also able to

define the name of the column which is created within the DataTable to hold the

ordinal MultiValued/subvalue position of each individual nested data element. For

Solution Objects, you can specify the default Entity name to be used to represent

the file along with the entity names to be used for the entities representing the

multi/sub value grouping within the file. Please refer to the respective developer

guides for more information on these topics.

The REFORMAT replacement subroutine input field allows you to specify the name

of a user-written subroutine that will be called by mv.NET to provide data which

would normally be generated via a REFORMAT command. You will need to use this

feature if the REFORMAT command is not available for use on a particular file, an

example of this being distributed files in UniVerse.

This REFORMAT replacement subroutine (RRS) must have the following declaration:

SUBROUTINE REFORMAT_DATA_FILEXYZ (ITEMID, DATAITEM, DICTNAMES, RETURNDATA)

Where:
ITEMID is the ID of a selected item.

DATAITEM is the data content of the above item.

DICTNAMES is a space delimited list of fields whose values are required.

RETURNDATA is an AM delimited list of values corresponding to the list of fields

names in the DICTNAMES argument.

If you use this feature, you will need to implement data generation (within the RRS)

for any field which is referenced via the DictionaryList property/argument within

CoreObjects or via the Fields segment within the CommandText property of an

Adapter Objects mvCommand instance.

Note, the values generated by the RRS should be in output format, i.e. the format

that would normally be generated by the corresponding dictionary item.

You could obviously use a named common area to optimize file opening etc as

required.

Core Objects Developer's Introductory Guide - The Data Manager

Page 72

Maintaining Item Data

Upon expanding a file name within the explorer tree, a set of sub-nodes will be

displayed. The first will be the Dictionary entry which allows you to maintain the

dictionary items within the file.

The last sub-node will be the Queries node which allows you maintain queries

associated with the file – see following Maintaining Queries section.

All the in-between nodes represent a data portion of the file.

The Maintain Item option from the data portion explorer tree context menu

displays the Data Manager's Item Maintenance window.

Upon entering the item maintenance window an initial selection of the first 200

items within the file is performed and the IDs of the items are listed within the

left-hand grid. To the right of the item ID grid is an editor text box which allows

the content of the currently highlighted ID to the viewed/edited.

At the bottom right of the item maintenance window is a ComboBox allowing you

to select an editor type. The value initially selected here is set according to the

data content type setting within the file's properties; you only need to change this

if you require editor options that are not available with the current settings – e.g.

program compile and catalog.

At the bottom left of the item maintenance window are 2 buttons allowing you to

choose which data view style you would like to use. The Editors style is the initial

selection, displaying one item at a time. Alternatively, the Grid view displays data

in a grid, showing 1 item per row.

Editors-style Data View
If you click the Editors button at the foot of the item maintenance window (which

is the default style) you will be able to view/edit item data one item at a time on

the right of the form. If you are using the Data editor (this can be selected using

the Editor style ComboBox at the bottom right of the window) you will be able to

select a second Dictionary Derived tab at the foot of the window which will allow

you to view/edit data based on dictionary names. The Refresh button on this tab

will force the schema for the file to be reloaded by the client and the item data to

be re-read and redisplayed within the tab. The Select Dictionary Fields toolbar

button may be used to specify which dictionary fields you wish to be included in

this tab.

Core Objects Developer's Introductory Guide - The Data Manager

Page 73

On entering the item maintenance form, you will be initially presented with the

Editors style view. At this point only the first 200 items of data will have been

selected for the file. On scrolling down through these items more data will be

retrieved as necessary until the end of file is reached. Using this method, the Data

Manager is able to safely open a file and select data irrespective of the number of

items within the file.

Grid-style Data View
If you click the Grid button at the foot of the item maintenance window you will be

presented with a grid showing one row per item - this is a read/write grid. You

may manually adjust the height of individual rows (by dragging row divider lines in

the left most column) to view more than one line of data - which you may wish to

do if you are viewing MultiValued data as each multivalue occupies its own line

within a row.

The Show/Hide Dictionary Columns toolbar button can be used to split the grid

vertically to allow you to view data based on dictionary-derived value as opposed

to the default (on the right) view of the physical content of items. The Select

Dictionary Fields toolbar button may be used to specify which dictionary fields you

wish to be included in the dictionary derived section of the grid.

The height of the header row within the grid may be manually adjusted (by

dragging the row divider line under the header row in the left most column) to

view extra definition data. The format of the header data for the physical data

content section of the grid is as follows:

Line 1 : Column title (if available)

Line 2 : Attribute position

Line 3 : The name of the dictionary item which has been used to interpret the

attribute position

Line 4 : The data type

Line 5 : The multivalue types

The format of the header data for the dictionary derived section of the grid is the

same except that line 2 (attribute position) is omitted.

Unlike the Editors style view, the grid view will, by default, select all items from the

file. If you wish to have option of selecting a subset of items from the file before

entering the grid view (which we recommend if a file contains a very large number

of items) you may use the setting within the File Properties window to force this.

Core Objects Developer's Introductory Guide - The Data Manager

Page 74

Special Keystrokes
Within the Item Maintenance form the keystrokes Ctrl-] or Ctrl-2 will insert a

multivalue mark; the keystrokes Ctrl-\ or Ctrl-3 will insert a subvalue mark.

Within the grid view Ctrl-Return will insert a new multivalue position (i.e. add a

new row) within a cell.

Queries

One of the nodes listed beneath a file node is the Queries node. This allows you

maintain queries associated with the file. An alternative way of accessing queries

is via the Queries node listed underneath an account profile node - this allows you

to view the full list of queries for all files within an account.

Query Overview
The Data Manager allows you to create predefined queries which you may then

incorporate into your rich client (WinForm) application. This feature can

dramatically reduce the time taken to incorporate reporting and ad-hoc querying

functionality into your application.

Please refer to the mvQuery classes within the Class Library Overview chapter for

more details on the classes used to present query content at runtime. Also, please

refer to the Binding Objects guide for details on the mvQuery control which is used

to run queries within WinForm components.

Maintaining Queries
Upon double-clicking any query node within explorer tree, the Data Manager's

Query Maintenance form is displayed. This form allows you to both define the

query and to also view the results of executing the query.

Core Objects Developer's Introductory Guide - The Data Manager

Page 75

Diagram 5l : The Query Maintenance Window

Each field on the above form is explained below.

Description : Reference purpose only description of the query.

Data file : The file to provide data for the query. The Open button next to this

field forces the Available Fields list at the bottom right of the form to be

repopulated.

Dictionary source : The dictionary which will be used during the execution of the

query. This defaults to the dictionary of the Data file but may be changed if

necessary to point to an alternate dictionary.

Heading : The heading of the query. This may incorporate parameterized values

as seen in the above screen shot. See Parameterized Values section below for

more details on this topic.

Selection clause : This field allows you to enter the selection clause to be used to

assemble the items to be included in the query results. If accepts standard

selection MultiValued selection command syntax.

Pre-select subroutine : The name of the subroutine to call before the query is

executed. This subroutine may serve a variety of purposes, the main one being

Core Objects Developer's Introductory Guide - The Data Manager

Page 76

the creation of the Pre-select save-list which may be referenced by the Pre-select

GET-LIST field - see below. The specified subroutine MUST have the following

argument signature, i.e. it must support 3 arguments:

SUBROUTINE EXAMPLESUB (QUERYNAME, ARGUMENTVALS, CANCELQUERY)

QUERYNAME is passed into the subroutine and holds the name of the query

being executed. ARGUMENTVALS holds an attribute mark separated list of

(multivalue mark separated) runtime argument name/value pairs that have

been collected just prior to the subroutine being called. CANCELQUERY can

be set (to a value of '1') within the subroutine to force cancellation of query

execution.

Pre-select GET-LIST : The name of the SAVE-LIST to be used to retrieve the list of

item IDs against which to run to selection clause.

Initial expand level : Indicates how multivalues and subvalues are to expanded in

the initial display of query results.

Use landscape print orientation : Indicates whether a landscape orientation is

required is the query results are printed.

Field Specifications : The 3 field lists which may be specified can have entries

added to them by clicking anywhere inside the target field list (so that the field list

box shows a blue border) and then double-clicking the required entry I the

Available Fields list.

Each entry in any of the field lists may have further definition information defined

for it by highlighting the relevant name and them clicking the Define button – or

by right-clicking any field list entry and selecting the Define option.

The ordering of entries in field lists may be amended by highlighting an entry and

then clicking the Up/Down buttons

A field list entry may be removed by highlighting an entry and then clicking the

Remove button.

Sort Fields : The sort order of the query results. The top most entry represents the

highest (outer) sort order. A hyphen at the front of a field name designates

descending sort order – the sort order of a field may be defined using the Define

button.

Display Fields : The list of fields to display in the query results. The title, width

and alignment of each column may be adjusted by highlighting an entry and then

clicking the Define button.

Break Fields : The fields whose values are monitored for changes so that

subtotaling and other change of value calculations may be performed. Note, only

field names that appear in the Sort Fields list may be entered into this list. The

Core Objects Developer's Introductory Guide - The Data Manager

Page 77

definition of a break field may be entered by highlighting an entry and then

clicking the Define button, at which point the following window will be displayed:

Diagram 5m: The Break Field Definition Window

In the above form, the wording to appear alongside the calculated value may be

specified. If you wish to incorporate values from the last item within the break

group, you may enclose dictionary names inside curly braces, e.g. {NAME} would

be replaced by the value of the NAME field in the last item in the break group. The

second input field on the form allows you to specify in which column within the

query results the above wording text is to be displayed.

The Sub-Totaling Details area allows you to specify up to 6 separate calculations

to be performed at this break level. The first column allows the types of

calculations to be specified. The second column allows the field which is to be

used to calculate the value to be specified. The last column allows the column

which is to be used to display the calculated value to be specified.

The checkbox at the foot of the form allows you to indicate whether the display of

the result lines which form this break group are to be hidden on initial display of

the query results.

Core Objects Developer's Introductory Guide - The Data Manager

Page 78

Testing the Query
In order to test the definition of the query you may click the Run Query toolbar

button. The Results tab is used to display the output. Note, the results tab simply

uses an mvQuery control to display the query results.

Parameterized Values
The heading and selection definitions of a query may both contain markers

representing values that are to be supplied at runtime. The markers should be

enclosed within curly braces and will result in a popup window (the 'argument

collection window') being shown at runtime to collect the required value. The

prompt text used in the argument collection window is whatever text appears

inside the curly braces.

Note, if you want to use the same parameterized value in the heading and

selection definition you must ensure that the text inside the curly braces is

identical for both instances – if you do this, mv.NET will recognize that you are

referring to the same argument and will only prompt for its collection once.

If you wish to force a parameterized value to be of a certain data type, you may

place a data type descriptor within round brackets at the very end of the curly

braced marker. The following data type descriptors are supported:

(D) – date

(D1) – date, being the first (oldest) date in a pair of dates

(D2) – date, being the second (most recent) date in a pair of dates

Note, the mvQuery control supports a Validate Arguments event which allows you

to either force re-entry of argument values or cancel the execution of the query.

Please refer to the Binding Objects guide for details on the mvQuery control.

mv.NET Soft Locks

The right-click context menu of an account profile node (and a login profile node)

contain an option called "Maintain Soft Locks". This option is only enabled when

an account is connected within the Data Manager.

Core Objects Developer's Introductory Guide - The Data Manager

Page 79

Soft locks allow pessimistic item locking to be emulated when either:

a) Session sharing mode of "None" is being used and pessimistic item locks need

to be carried across session login/logout boundaries. That is, an application is

liable to use different sessions/database connections (PIBS) to service each

individual session acquire/release action.

b) Session sharing mode of "Multiple session" is being used. In this scenario,

several different clients may utilize the same session (PIB), in which case the

standard READU item locking mechanism of the database engine is rendered

ineffective. Additionally, as with a Session sharing setting of "None", clients

may use different sessions (PIBS) to service each individual database request.

Soft locks are held within the MVNET.CONTROL file, one lock per item. The item

ID of each of these soft lock items is as follows:

"LOCK {accountname} {filename} {ItemID}"

Where {accountname} is the name of the account holding the file, {filename} is

the name of the file holding the item and {ItemID} is the ID of the locked item.

Note, mv.NET applications using soft locking will be "item lock incompatible" with

other applications not utilizing mv.NET soft locking. This is because mv.NET soft

locking does not utilize persistent READU locks. READU locks are only used for a

fraction of a second whilst the MVNET.CONTROL file is being maintained by

mv.NET.

The Maintain Soft Locks menu option displays a maintenance window which allows

you to view the locks currently in force and remove any erroneous ones:

Core Objects Developer's Introductory Guide - The Data Manager

Page 80

Diagram 5n: The Break Field Definition Window

The "Auto refresh" checkbox in the top right corner on this maintenance window

will, when ticked, force the contents of the displayed soft lock table to be

refreshed every second.

The "Remove Lock" button will remove the currently highlighted lock.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 81

Extended Dictionary

Definitions

This chapter covers the topic of mv.NET's extended dictionary definitions - an important

topic for the developer especially if you intend to use mv.Net's Binding Objects or

Adapter Objects products.

The Need for Extended Dictionary Definitions

All MultiValued databases support dictionary items, items which describe the data

content of items within a file. However, the level of detail to which these 'native'

dictionary items go down to is somewhat limited.

There are several places within mv.NET where a fuller, more complete definition of

the schema of a file is required. For this reason, you are able to create 'extended'

dictionary definitions to contain this extra schema data.

The extra definition data within extended definitions allows various aspects of

mv.NET to better understand the structure and type of data within an item and

also the relationships between attributes of data within the same item and also

between items of data across different files.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 82

Maintaining Extended Dictionary Definitions

The easiest way to maintain the extended dictionary items for a file is via the Data

Manager utility. Please refer to the schema maintenance section within the Data

Manager chapter for more details on this.

Alternatively, you may maintain extended dictionary definitions programmatically

using the mvSchema and mvSchemaItem classes of the Core Objects class library.

Please refer to the Class Library Overview chapter and the on-line help for more

details on these classes.

Extended vs. Native Dictionary Definitions

It is important to note that the native dictionary definitions of a MultiValued

database are still very important to mv.NET as these are used extensively to obtain

information from the database. The extended dictionary definitions of mv.NET

augment the native definitions and when the term 'schema' is used within any of

mv.NET it is used to describe the combination of both the native and extended

dictionary definitions of a file.

mv.NET is able to work with any of the native dictionary definition formats

implemented by MultiValued databases.

The Storage of Native Dictionary Definitions

mv.NET stores its extended dictionary definitions in one of 2 locations; either in

the dictionary portion of the relevant file or in a file named "MVNET.SCHEMA".

mv.NET will automatically use the MVNET.SCHEMA file if it finds it within the

application account, otherwise is will use the dictionary portion of files. There are

2 utility routines that can be used at command level within the database account

to migrate extended dictionary items from the dictionary portion of files into

MVNET.SCHEMA and vice-versa:

MVNET.SCHEMA.MIGRATE - moves extended items from dictionary portions

of all files into MVNET.SCHEMA

MVNET.SCHEMA.DEMIGRATE - moves extended items from MVNET.SCHEMA into

the relevant dictionary portion of files

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 83

If you wish to use the MVNET.SCHEMA method of extended items storage, you

need to manually create the MVNET.SCHEMA file within the account and then use

the MVNET.SCHEMA.MIGRATE utility. You must also create a visible files list using

the Data Manager to use the MVNET.SCHEMA method of storage. mv.NET will

create a separate data portion within the MVNET.SCHEMA file for each file being

used via mv.NET as and when it is required to do so.

Where extended definitions have been created by the developer (note, extended

definitions are never generated automatically by mv.NET) there is one extended

definition item for each native dictionary item that has been 'extended'. The item

ID of an extended definition item takes the form: {xyz} - where xyz is the name

of the native dictionary item – i.e. extended dictionary items have the same item ID

as the native item to which they relate but are enclosed within curly braces.

Extended Definition Fields

In all, there are around 30 separate extended dictionary definition fields which

may be defined. You need to define whatever fields, for whatever native dictionary

items are relevant to your application development requirements. You may do this

preemptively all at once or you may do it on a piecemeal, as required basis.

The following sections cover all the available extended definition fields and also

describe where each field is used by Core Objects, Binding Objects and Adapter

Objects. The extended dictionary field name used as the title of each of the

following sections is the same as the corresponding property name of the

mvSchema class. Note, the number in brackets following the name of the

extended field in the following sections represents the attribute number that the

extended field data in stored in within the extended item.

AttrPos (1)
The attribute position of the field. If no extended definition exists for a dictionary

item, this extended field will be set to the attribute position as indicated by the

native dictionary item.

The AttrPos field is used to extract data based on name from within data items

and is used throughout Core Objects for this purpose.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 84

Title (2)
The descriptive title of the field. If no extended definition exists for a dictionary

item, this extended field will be set to the Title text as indicated by the native

dictionary item.

The Title field is used by Binding Objects when a field is referenced in columnar

display/input formats, such as within grids or queries.

Justification (3)
The default display/input justification of the field. If no extended definition exists

for a dictionary item, this extended field will be set to the justification setting as

indicated by the native dictionary item.

This definition field is used in the same way as the Title field.

Width (4)
The default display/input width of the field. The unit of measure here is character

count. The appropriate conversion of this to pixels is performed by Binding

Objects automatically. If no extended definition exists for a dictionary item, this

extended field will be set to the width value as indicated by the native dictionary

item.

This definition field is used in the same way as the Title field.

DataType (5)
The fundamental data type of the field. This may be one of the following:

DataAlphaNumeric

DataNumeric1

DataNumeric2

DataNumeric3

DataNumeric4

DataNumeric5

DataNumeric6

DataNumeric7

DataNumeric8

DataNumeric9

DataInteger

DataNumericEmbedded

DataDate

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 85

DataTime

DataBoolean

The DataAlphaNumeric setting indicates a free text field. The DataNumericn

settings indicate a numeric field of n decimal places which is stored on the

database with no decimal point. The DataNumericEmbedded setting indicates a

numeric field with its decimal point stored within the database.

This definition field is used in numerous places by Core, Bindings and Adapter

objects, mainly in the areas of data validation and the decision of which visual

controls to use in the representation of data on forms.

MVType (6)
This field indicates whether the field is MultiValued or subvalued. It may be set to

one of the following values:

Singular

Multivalued

Subvalued

In Binding Objects, this definition field is used to determine the visual control that

will be used to show data on a form. Both Binding and Adapter Object use this

field to control relationships between data.

MVGroup (7)
The name of the multivalue grouping to which this field belongs. This is logical

name that can be decided by the developer, but, all fields that belong to the same

group must have their MVGroup set to the same name.

Core, Binding and Adapter Objects all use this field to automatically keep all

multivalue groupings in-step when multivalue positions are added or deleted.

Adapter Objects uses this definition to control its Dynamic Normalization process

- see Adapter Object guide for more details.

SVGroup (8)
The name of the subvalue grouping which this field belongs to - see MVGroup.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 86

InputMandatory (9)
Indicates whether the input of this field is mandatory. This is used by Binding

Objects' input validation process.

InputPrompt (10)
The default prompt text for a field. This is used by Binding Objects' databound

control creation wizard.

InputDefault (11)
The default value for this field. This is used by Binding Objects' to initial populate

a databound control with data when new items are created.

InputMin (12)
The minimum valid value for a field. This is used by Binding Objects' input

validation process.

InputMax (13)
The maximum valid value for a field. This is used by Binding Objects' input

validation process.

InputCasing (14)
Indicates how the upper/lower casing of a field during the input process is to be

controlled/forced. This is used by Binding Objects' input validation process.

InputOptions (15)
The list of valid options for a field. This can be used by Binding Objects to

populate the options list of ComboBoxes and other controls.

InputInOptions (16)
This indicates whether a field's value has to be within the InputOptions list (see

above). This is used by Binding Objects' input validation process.

BooleanTrue (19)
The string value that represents a Boolean value of 'True'. This field is only

relevant for extended fields with a data type setting of 'Boolean'.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 87

BooleanFalse (20)
The string value that represents a Boolean value of 'False'. This field is only

relevant for extended fields with a data type setting of 'Boolean'.

Dependencies (21)
The fields that are used to derive/calculate the value of a field. This is used by

both Core and Binding Objects to automatically detect when the value of a

calculated field needs to be regenerated.

LinkedFile (22)
The name of the file to which a field is a foreign key. This is used by the Solution

Objects entity interrelating process and by Adapter Objects in its AutoLinking of

DataTables.

LinkedFileIDField (23)
The name of the item ID field within the LinkedFile.

LinkedFileDescField (24)
The name of the primary descriptive field within the LinkedFile.

Notes (25)
Allows general programmer/data usage notes to be stored with a definition. This

field is for programmer reference only.

AdapterColumnName (26)
This is only used by Adapter Objects and represents the name of the DataColumn

that is created to hold the value of a field within an ADO.NET DataTable. It is also

used by Solution Objects as the default name of the entity property representing

this field.

SysDelimTrans (27)
This setting allows system delimiter translation to be turned on for a particular

data field. This feature is only relevant for calculated fields representing

multivalued/subvalued data. On most MultiValued database platforms, calculated

values have VM/SVM characters automatically replaced by space characters. This

setting allows the developer to indicate how these space (or other) characters are

to be converted back into VM/SVM characters.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 88

SysDelimTransVM (28)
Allows the character within calculated field values that represents a value mark to

be defined.

SysDelimTransSVM (29)
Allows the character within calculated field values that represents a subvalue mark

to be defined.

LinkedFileProperty (30)
Allows the name to be used by Solution Objects when a property relating to the

linked file is created.

CompoundDataSep1 (31)
The character separating individual elements of data within an attribute containing

multiple data elements.

CompoundDataPos1 (32)
The index position if the required data element within an attribute that contains

multiple data elements. If this value is blank, all data elements will be returned as

a multivalued list.

CompoundDataSep2 (33)
The character separating individual sub-elements of data within an attribute

containing multiple data sub-elements within each main data element.

CompoundDataPos2 (34)
The index position if the required data sub-element within an attribute that

contains multiple data sub-elements. If this value is blank, all data sub-elements

within the specified CompoundDataPos1 will be returned as a multivalued list.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 89

Compound Data Handling

The Compound Data feature of the extended dictionary allows you to define how

mv.NET is to break apart attributes that contain multiple data elements delimited

by custom value separators. This breaking apart allows for both data retrieval of

sections of data and update of individual parts.

An important thing to note for the compound data feature is that if you need to

select data items based on the value of a compound data element you still need to

create a native dictionary definition that performs the raw data extraction.

It's worth noting that if you only ever require read-only access to the separate

elements of data, you don't need to use the compound data feature. You simply

need to create a native dictionary definition that extracts the relevant data and you

will be able to use this as a calculated field with mv.NET. However, calculated

fields do not support write-back to the database. This is what the compound data

feature provides.

The compound data feature works in conjunction with native dictionary items to

provide mv.NET with enough understanding of the internal structure of the data to

allow it to extract/add/insert/delete individual elements of data.

Let's illustrate this feature by the use of an example.

Say we have a file with a field (DATEPARTS) containing the following data:

13634*AB76|13638*SG630

Here we have a list of data value pairs, with each pairing separated from the next

by the use of a pipe ("|") character. In each pairing the 2 values are separated by

the use of an asterisk character; the first value is a date (internal representation),

the second value is a part number.

Let us suppose that we want to define the following fields:

1. A field that returns/allows update of the first date value (FIRSTDATE)

2. A field that returns/allows update of the list of part numbers (PARTNUMBERS)

For both fields we need to specify a compound data separator of "|" for the first

level and "*" for the second level. This is done within the "General" tab of the

"Extended" dictionary definition tab of the Data Manager's Schema Maintenance

form:

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 90

Also, and very importantly, we need to specify in the Dependencies tab of the

extended field definition the fact that this field is dependent upon the base

(DATEPARTS) data field for its value.

Working with a Single Compound Data Value

For the first field (FIRSTDATE), we need to specify a value of 1 for both the level 1

and level 2 positions. We also, if we intend to use this field in selection

statements to be run against the database, we will need to create a native

dictionary item that performs the relevant extraction. Below is an example I-type

dictionary that does the job:

001 I
002 FIELD(FIELD(DATEPARTS,"|",1),"*",1)
003 D2
004 First Date
005 12L

If you will never reference the field in database selection commands, the native

dictionary for the FIRSTDATE field can simply be a copy of the DATEPARTS field,

except for the data type, which needs to be set to Date.

OK – so, in summary, we have created a native dictionary item called FIRSTDATE.

We have extended this dictionary item in the Data Manager's Schema Maintenance

screen to:

a) specify a data type of Date

b) specify a dependency on the DATEPARTS base field in the Dependencies tab

c) specify the Compound Data settings in the General tab as per above

This then provides us with read/write access to the FIRSTDATE field.

Core Objects Developer's Introductory Guide - Extended Dictionary Definitions

Page 91

Working with a List of Compound Data Values

For the second field (PARTNUMBERS), we need to specify a value of "2" for the level

2 compound data separator position – the level 1 position being left blank or set

to "0". A blank/zero level 1 position indicates that we require a list of values

returning.

As with the FIRSTDATE field, if we intend to use this field in selection statements

to be run against the database, we will need to create a native dictionary item that

performs the relevant extraction. Unless you are a dictionary item expression

guru, this may well involve coding a custom basic subroutine to do the job and

invoking this subroutine via the dictionary item.

In summary, we have created a native dictionary item called PARTNUMBERS. We

have extended this dictionary item in the Data Manager's Schema Maintenance

screen to:

a) specify a data type of Alphanumeric

b) specify a dependency on the DATEPARTS base field

c) specify the Compound Data settings as per above

This then provides us with read/write access to a multivalued list of part numbers

via the PARTNUMBERS field.

Core Objects Developer's Introductory Guide - The Session Manager

Page 92

The Session Manager

This chapter describes the purpose and function of mv.NET's Session Manager and session

pooling components.

The Need for Session Management

Session Management (also referred to as Session Pooling) within mv.NET is simply the

ability to maintain one or more (i.e. a pool of) open database connections across

application requests for database access. That is, if an application requests a database

session during its execution and then releases it upon termination the session may be

kept open ready for the same or another application to utilize it at some future point in

time without needing to perform a fresh database connection initialization phase.

The concept of a session pool may, thus, be defined as a dynamic, self adjusting

collection of database connections able to expand and contract between defined bounds

according to the demand for database access across a population of application clients.

The way in which session management works on a given system can be controlled to

allow the precise requirements of an installation to be met. This is done by setting a

number of control values within the product. See the Configuring Session Management

section below.

In its creation of database connections, the Session Manager communicates with the

License Manager in order to ensure that occurrence of database sessions complies with

the purchased number of licensed connections. Please refer to the License Manager

chapter for more details on database license management.

Core Objects Developer's Introductory Guide - The Session Manager

Page 93

What is the Session Manager?

The Session Manager comprises 4 executables:

mvNET.SessionManager.Service.exe

mvNET.SessionManager.exe

mvNET.SessionCluster#n.exe

mvNET.CoreMonitor.exe

These 4 programs are responsible for overseeing all aspects of session management on a

given system.

The mvNET.SessionManager.Service.exe (as its name implies) runs as Windows service. It

is during the startup of this process that the other processes are launched.

The mvNET.SessionManager.exe process is a .NET remoting server which is responsible

for managing session pooling. As part of its duties, this process will launch one or more

processes which are to host the actual database connections, these processes are known

as 'Session Clusters'. Each session cluster may host several database connections, the

precise number being controlled by the Session Manager Settings - see Configuring

Session Management below. Each cluster has a unique process ID, being of the form

mvNET.SessionCluster#n.exe, where n represents the session cluster number.

The mvNET.CoreMonitor.exe process is responsible for providing monitoring services

across all the session management executables.

The Location of the Session Manager

The Session Manager needs to be installed onto the system which will hold one or more

pooled database sessions. To aid understanding of which system this should be, 2

scenarios are explored.

The first scenario is where software developer Bill wants to use Core Objects in the

application he is developing. The MultiValued database that Bill is going to access

requires a connection to be established via a Telnet IP link, and therefore will entail a

connection negotiation sequence to be performed as part of the initial connection

process. Negotiated connection sequences, such as this, can often take a second or two

to complete, therefore Bill has, rightly, decided to use the Session Manager to hold open

his database connections across application invocations. This means that when he runs

his application to test something, the time taken to obtain a database connection will be

practically instantaneous, apart, of course, from the very first time this is done.

Core Objects Developer's Introductory Guide - The Session Manager

Page 94

Bill, therefore, needs to install the Session Manager on his own workstation, as he needs

to, in effect, operate his own personal connection pool irrespective of any other users. If

he installs the Client Interface Developer, this will be done automatically for him.

The second scenario is where company XYZ is developing a web-based application,

incorporating Core Objects to access their MultiValued database to retrieve stock

information. As a web-based application, their code is organized into atomic units that

are executed on each HTML page invocation, typically first opening a database, then

reading/writing data and finally terminating the connection. This is an ideal candidate for

session management/pooling as the Session Manager can keep databases connections

open across page invocations and therefore avoid each page having to establish a new

database connection every time it is accessed.

In this situation, each web page is, in effect, an application client, and therefore the

Session Manager should be installed onto the web server using the SRDK setup routine.

From the above scenarios in can be seen, therefore, that the Session Manager needs to be

installed on the system which is hosting the processes that need to share a database

session pool, be that an individual’s workstation or a web server/service host.

Multiple Session Managers

For very large installations or for installations where there is a need to provide system

redundancy in the role of session manager, it is possible to run mv.NET session

management on more than one system. In such situations, each session manager

operates independently, and it is up to either the client application or the networking

infrastructure to control which session manager a client will access at any given point in

time. Please refer to the License Manager chapter for details on how license management

is organized in such scenarios.

Core Objects Developer's Introductory Guide - The Session Manager

Page 95

Configuring Session Management

There are 2 places where the operation of the Session Manager can be controlled via

settings, both accessed via the Data Manager application.

The first is the Session Manager Settings node within the main explorer treeview within

the Data Manager. Upon opening this node, the following form will be displayed:

Diagram 7a : The Session Manager Settings Window

The various fields on this form are explained below:

Session Manager system name: This field holds the IP address or resolvable machine

name of the system hosting the Session Manager. This will normally be the same as the

host system but can be different if the Session Manager is running on a separate system.

Session Manager port: The port on which the session manager 'listens' for

communications. Note, it is on this port that the mvNET.SessionManager.exe listens; the

mvNET.CoreMonitor.exe listens on this port number plus 1. The

mv.NET.SessionCluster.exe listens on this port number + 2 + the cluster number. The

default value for port setting is 10013.

Logging level: Allows the internal messages flowing between the session management

components to be logged. If this level is set to anything other than 'None', these

messages may be viewed within the Session Monitor application.

Core Objects Developer's Introductory Guide - The Session Manager

Page 96

Max. number of clusters: The maximum number of session cluster processes which may

be concurrently active at any one time.

Max. sessions per cluster: The maximum number of sessions which may be hosted by a

single cluster.

Max. concurrent session launches: Allows the maximum number of concurrent session

launches within a cluster to be specified. This setting is used to prevent a new session

launching cascade, whereby if many clients all simultaneously request a session, the

instantiation of new sessions is choked to prevent an unnecessarily large number of new

sessions being created.

Independent Database Housekeeping: During its normal course of execution, mv.NET

generates a range a temporary data on the server. This input area allows you to indicate

when the automatic housekeeping of this temporary data is to run.

Synchronized Database Housekeeping: If you wish to have all the database-resident

mv.NET temporary data deleted, the mv.NET Session Manager service needs to perform a

restart of itself. This input area allows you to specify when such a restart should be

performed. Tick the days when service restart should be triggered and indicate at which

time of day this is to be done. If you have more than one system running session

management, only one should be set to run synchronized housekeeping. The system

names of the other session managers can be specified within the lower section of this

input area.

Email alert settings: If you have an email server available that is configured to allow the

relaying of emails you may specify the relevant details in the 2 email alert input fields to

receive emails when certain events are detected by the Session and License managers. If

you require emails to be sent to multiple addresses you may enter more than one email

address, each separated with a semi-colon in the recipients input field. The following

events will trigger the transmission of an email to the specified email addresses:

- The detection of an invalid license by the License Manager

- A change of status of the Primary/Secondary License Managers

Please refer to the License Manager chapter for details on the purpose of the 2 License

Server input fields.

The second place where settings controlling the operation of session management are

held is within account profile definitions. Each account has its own series of settings that

indicate how the pool of sessions for that specific account is to be operated.

Core Objects Developer's Introductory Guide - The Session Manager

Page 97

Minimum number of sessions to pool: Allows you to indicate the minimum number of

sessions that may be contained within the pool.

The Launch minimum sessions on Session Manager service startup checkbox allows you

to indicate whether this minimum number of sessions should be automatically established

upon Session Manager service startup, or whether it should be reached through the

natural increase in demand for connections. However, once this minimum number of

sessions is reached, the Session Manager will not allow them to be released.

Maximum number of sessions to pool: Allows you to specify the maximum number of

sessions that may be held open (ready for allocation) within the session pool at any one

time. The minimum allowable value in this field is 1.

Terminate pooled sessions after n minutes of existence: Allows you to indicate the

maximum life span of a session within the pool. When a session has been in existence for

greater than the amount of time indicated by this field it will be gracefully terminated. A

value of zero here indicates that session's lifespan is unlimited (unless otherwise

terminated)

Terminate pooled sessions after n seconds of inactivity: Allows you to indicate the

maximum number of seconds that a pooled session may remain inactive within the

session pool before it is automatically terminated. A value of zero here indicates that

sessions are to be kept open indefinitely. A value of 1 indicates that as soon as a session

becomes free it will be terminated - in effect preventing session pooling.

Free-up allocated sessions after n seconds of inactivity: Allows you to indicate the

maximum number of seconds that a pooled session may remain in an 'Allocated' state

with no activity. If a non-zero value is entered here, the status of an allocated session will

be adjusted in accordance with the setting of the 'Free-up style' input field (see below).

This field should be used with care. It is primarily provided to allow the session manager

to automatically recover from situations where an application has terminated in a non-

graceful manner, i.e. without performing a session disconnection action

(mvAccount.Logout). A value of zero here indicates that no automatic session freeing is

to be performed.

Free-up style: This input field allows you to select the style of free-up action invoked

when the free-up period defined above expires. There are 2 options:

- Set status to "Free"

- Remove from session pool

Core Objects Developer's Introductory Guide - The Session Manager

Page 98

The first option is designed to cater for client crashes; that is, situations where a client

application has aborted abnormally without indicating to the session manager that it has

finished with a session. When the free-up period expires, the state of the session is set

to "free". Note, the assumption here is that the associated server process is still active

and able to respond to further requests.

The second option is designed to cater for server-side crashes; that is, situations where

the server-side process has fallen into a debug state or has otherwise 'died' without any

notification having been sent back to the client-side session manager. In such a situation

(when the free-up period expires), a setting of 'Remove from session pool' will result in

the corresponding entry being removed cleanly from the session pool.

Session sharing mode: This dropdown list allows you to specify how pooled sessions are

to be shared across multiple client processes/threads. The following options are

available:

None - No session sharing will be allowed. That is, once a client process has been

allocated a session for this account from the connection pool, it will have exclusive

access to that session until it explicitly releases it.

Single - All processes requesting access to a session that is connected to this account

will be 'channeled' through a single session. This option should be used only in a

development environment where it is likely that processes will crash or will be

manually halted prematurely before releasing a session.

Multiple - All processes requesting access to a session that is connected to this

account will be allocated a free session for the duration of a single server request

(round-trip) only. After a response is received back from the server, the session will

be automatically placed back into the session pool and made available for other

clients. It is important to note here that the client application will still 'think' that it

has a permanent connection to the database - the session allocate/free activity

happens automatically. Multiple session sharing allows a greater degree of connection

sharing amongst clients but does place a slightly higher load on the Session Manager.

The Multiple session sharing option is typically used to allow multiple rich client

applications to be multiplexed through a relatively small number of database

connections. However, there are several restrictions in this setting:

1. O/S level pessimistic locking is not available. To work around this, mv.NET

supports a concept of 'soft' locks, which essentially means that mv.NET operates

the pessimistic item lock table for an application as opposed to the O/S. This

Core Objects Developer's Introductory Guide - The Session Manager

Page 99

allows pessimistic locking to be used in a situation where several discrete clients

share the same physical database process (PIB). It should be noted that soft

locking should only be used when mv.NET is the only method being used to lock

data. It will not ensure lock integrity with other applications using traditional

READU item locking. Soft locking is activated on the "Other" tab of the account

profile definition. Please refer to the mv.NET Soft Locks section within the Data

Manager chapter of this Guide for more information on soft locks.

2. Index-based data access is not available. That is, the use of the

mvFile.IndexSelect method is not allowed.

Auto release sessions: This field is only enabled when the session sharing mode is set to

"Multiple" and allows you to specify (in milliseconds) the length of time that the

automatically acquired database connection will be retained before being released. If you

require the connection to be released as soon at the database round-trip is completed,

this value should be set to zero. Using a non-zero value here allows you to reduce the

session allocate/release burden on the Session Manager but at the cost of clients

retaining connections for longer periods of time.

Queue for free session: This checkbox allows you to specify whether a process will wait

for a session to become available if all current sessions are allocated and the maximum

concurrent session limit of the session pool had been reached. If this option is not

checked, an exception will be raised if the above set of circumstances arises.

The Queuing Poll Interval field allows you to define how frequently a process will poll for a

free session if it has been placed in a wait queue. A process will poll for a free session n

number of times (as indicated by the Maximum number of poll attempts setting) before

an exception is raised.

The Session Monitor Application

To allow you to view and control the session pools on a system, a monitor program is

supplied. This program is located in:

Program Files

(x86)\BlueFinity\mv.NET\Version4.x\bin\mvNET.SessionMonitor.exe

A short-cut to this program is also placed on the Start\Programs\mv.NET menu by the

installation routine. Upon invoking this application, the following form is displayed:

Core Objects Developer's Introductory Guide - The Session Manager

Page 100

Diagram 7b : The Session Monitor Application

There are 3 tabs contained within the monitor's form:

The Active Sessions tab lists all of the sessions and session clusters currently known to

the Session Manager.

The Message Logging tab allows you to view the messages being generated by the

Session Manager and other internal components of the system.

The Database Licensing tab allows you to view the Database Access Licenses (DALs) that

are both installed (available) and currently in-use.

Within, the Active Sessions tab, there are right-click context menus which allow a range of

maintenance operations to be performed.

The Message Logging tab allows you to view both the messages that have been generated

by the current instance of the Session Manager and those generated by previous

instances.

The menu bar of the Session Manager allows the cache of schema data for a given

account profile to be manually cleared (see section Other Account Profile Settings). It also

allows you to view the mv.NET database licensing information being used by the License

Manager – see following chapter for more details on this topic.

At the foot of the Session Monitor window are 4 buttons which allows the status of the

Session Manager and License Manager services to be controlled. The current status of the

service is also shown. Note, these buttons are only shown if these services are running in

the same system as that being used to run the Session Monitor utility.

Core Objects Developer's Introductory Guide - The Session Manager

Page 101

Monitoring a Remote System

The Session Monitor application can monitor a Session Manager which is hosted on a

different system to that on which the monitor is running. For the monitor to know where

the Session Manager is running, the ConfigurationPath file must contain the address of

the Session Manager – see section The Configuration Database for more details.

Core Objects Developer's Introductory Guide - The License Manager

Page 102

The License Manager

This chapter describes the purpose and function of mv.NET's License Manager, along with the

basic principles of database access licensing within mv.NET. It also covers the procedure for

applying for, installing and viewing database access licenses.

The Role of the License Manager

Each concurrent mv.NET session to a specific database instance consumes an mv.NET

database access license. You may purchase the required number of licenses for each of

the database instances to which you require access via mv.NET. Each database access

license is registered with a specific License Manager; a Session Manager must have access

to a License Manager to successfully establish database connections. The License

Manager ensures that (as a maximum) only the purchased number of concurrent sessions

to a specific server is in effect at any one time.

The License Manager Service

The License Manager manifests itself as a Windows service. This service will be

automatically installed as part of the CID setup or SRDK setup installation routines.

Core Objects Developer's Introductory Guide - The License Manager

Page 103

Specifying the License Manager Address

The Session Manager needs to know where to find the License Manager. This can be done

using the Session Manager Settings node within the Data Manager explorer treeview. This

window allows both a primary and secondary address/system name to be supplied. If

only one License Manager is in operation, only the primary address should be entered. If

no addresses/names are entered, the Session Manager will assume that the License

Manager can be found at localhost. The License Manager listens on the remoting port

number used by the Session Manager minus one. See the following Multiple License

Managers section for details on running multiple License Managers.

Licensing Principles

The basic concept of database access licensing within mv.NET is that an access license for

a set number of concurrent connections to a specific database installation needs to be

installed into a License Manager. In order for a Session Manager to establish a connection

(session) to a database, it must be able to contact a License Manager that has the

appropriate access license installed. The License Manager checks the number of active

sessions vs. the number of licensed sessions in order to decide whether the Session

Manager is to be allowed to establish a new connection.

Applying for Database Access Licenses

In order to receive a database access license, you first need to request it. This can be

done using either the Data Manager (mvNET.DataManager.exe) or the License Request

utility (mvNET.LicenseRequest.exe). The License Request utility is provided as a

standalone utility and is intended for use by system integrators as a way of pre-

requesting database access licenses in advance of a pending mv.NET installation.

NOTE, when applying for database access licenses, the Data Manager or License Request

utility MUST be run on the system which is going to or which is currently running the

License Manager service.

Using the Data Manager, you need to right-click the appropriate server profile and select

the 'Request Database Access License' option. On doing this, the following window will be

displayed:

Core Objects Developer's Introductory Guide - The License Manager

Page 104

Diagram 8a : The Database Access License Request Window

On entering the appropriate details into the above input fields, you should click the

'Generate' button in order to be shown the text which you should email to your mv.NET

supplier in order to receive the relevant database access license.

The same window will be shown if you use the License Request utility, except that you will

need to manually enter the database platform type.

Installing a Database Access Licenses

Once a product license has been requested, you will receive an email containing a license

file. On Vista, Windows7 and Server2008 systems, this file should be saved into the

following location:

C:\ProgramData\BlueFinity\Licences

On all other systems, this file should be saved into the following location:

C:\Documents and Settings\All Users\Application Data\BlueFinity\Licences

Core Objects Developer's Introductory Guide - The License Manager

Page 105

Note, for Database Access Licenses, you need to perform this on the system which is

hosting the License Manager service. For CID licenses, you need to do this on the system

on which you have installed the CID product.

After saving the license file, please run the License Registration Utility - a shortcut to

which will have been placed on your Start\BlueFinity\mv.NET menu by the mv.NET setup

routine. This registration utility displays the following screen:

Diagram 8b : The License Registration Utility Window

Core Objects Developer's Introductory Guide - The License Manager

Page 106

If you already have a previously registered license for the same database (for example a

previously activated evaluation license), you will need to highlight it within the top ListBox

and click the Unregister button to remove it. Next, highlight the new license within the

Licenses Awaiting Registration ListBox and click the register button. At this point your

new license will be active.

Note, the License Manager does not need to be restarted for a new DAL license to be

detected.

NOTE, it is essential that you do not amend the contents of any license files.

Viewing Installed Database Access Licenses

To view the database access licenses which are currently installed within the License

Manager, you may use either the Data Manager or the Session Monitor applications. Both

have a 'License Control' menu option, with a sub-option of 'View Database Licenses'. This

option displays all the database access licenses installed within the License Manager.

License Manager Evaluation Mode

When the License Manager is first installed, it will, by default, allow up to 2 concurrent

connections to any database installation for up to 30 days from the time of installation.

Any access licenses applied during this evaluation period will, naturally, override this

behavior. After the 30 days evaluation period has expired, access to databases will only

be allowed if the appropriate database access license is installed.

Multiple License Managers

In situations where there are multiple session managers, you may introduce a 'secondary'

License Manager to act as a fall-back capability should the system hosting the primary

License Manger fail. The addresses of both License Managers should be entered into the

Session Manager Settings node within the Data Manager explorer treeview. The

secondary License Manager continually polls the primary to detect if it has gone off-line.

If such a condition is detected, the secondary adopts the role of primary. The Session

Managers also detects the loss of primary License Manager and automatically switches to

Core Objects Developer's Introductory Guide - The License Manager

Page 107

using the secondary. When the primary comes back on-line, the secondary and all

Session Manager automatically revert to using it in preference to the secondary.

If a secondary License Manager is used, it must have all the equivalent license files

installed as the primary. Please contact your mv.NET supplier for the supply of license

files for secondary License Managers.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 108

Class Library Overview

This Chapter provides an overview of the object classes contained within the Core Objects assembly

(class library). These are the classes which the developer utilizes within their application code to

access MultiValued systems from within their .NET application.

Introduction

Each class within the Core Objects class library contains a range of interface members –

methods, properties and events. It is by using these members that the developer is able to

carry out a wide range of MultiValued database related tasks within the .NET environment.

Many of the features provided by these classes will be familiar to the MultiValued developer;

in fact, wherever possible, Core Objects' classes have been designed to mirror the traditional

functionality provided by DataBASIC and other core MultiValued components.

However, becuase the client/server architecture differs in a number of fundamental ways

from the legacy green screen application paradigm, mv.NET's classes provide features that

will be new to the MultiValued developer. To this end, the Sample Application chapter

following on from this class reference overview contains discussions covering several issues

that the mv.NET developer should be aware of.

This class reference overview must assume a certain degree of knowledge on behalf of the

reader - the main one being the understanding of how to program in .NET. If you need to

obtain further information on this topic, please contact us at info@bluefinity.com and we will

be happy to provide you with assistance on where you can obtain further help.

The examples provided in this guide are coded using VB.NET - however, you may use Core

Objects within any .NET compliant language.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 109

Core Objects - Class Summary

The Core Objects assembly contains the following main classes:

mvEnvironment The top level class, primarily there to provide

access to the Configuration Database.

mvServer Represents a single MultiValued system that needs

to be connected to. This class is rarely used, but

exists primarily to provide a logically complete

hierarchy.

mvAccount Provides a connection to a specific MultiValued

database account. This is the main class for

accessing the contents of a MultiValued database.

mvFile Provides a connection to a single database file.

mvItem Holds a reference to a specific file item.

mvItemList Hold a (selective) list of mvItem objects.

mvSchema Allows maintenance of/access to schema

definitions.

mvSchemaItem Holds a reference to a specific schema item.

mvSelect Allows advanced selection criteria to be supplied to

selection-oriented methods of the mvAccount and

mvFile objects.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 110

The following diagram illustrates the hierarchical relationships between these classes:

The library also contains a number of additional ancillary classes:

mvDBRPC Allows database server routines to trigger events

within the .NET client environment.

mvDataTable Inherits from the ADO.NET DataTable class.

Provides ADO.NET style access to the data within

an mvItemList instance.

mvQueryList Represents the results of running a query defined

using the Data Manager.

mvQueryRow Represents a single row within an mvQueryList

instance.

mvQueryColumns Represents the columns within an mvQueryList

instance.

mvQueryColumn Represents a single column within an

mvQueryColumns instance.

mvSessionControl Allows programmatic control of the database

mvSelect

mvEnvironment

mvAccounts

mvFile

mvItemList

mvItem

mvSelect

mvServers

mvServer

mvSchema

mvSchemaItem

mvAccount

Core Objects Developer's Introductory Guide - Class Library Overview

Page 111

session pooling.

mvSession Represents an entry within the current database

session pool.

mvSnapShots Holds a list of mvItem instances representing a

named snapshot of an item.

mvException The standard exception class used internally by all

Core Objects classes when an error is encountered.

Class mvEnvironment

An mvEnvironment instance may be viewed as the environment described by the local

Configuration Database, i.e. an environment that is made up of MultiValued database servers,

accounts, etc.

The creation and maintenance of an environment's definition, i.e. the creation and

maintenance of Configuration Database entries, will typically be achieved using mv.NET's

Data Manager application. This application, amongst many other things, provides any easy to

use and intuitive interface for maintaining the contents of the Configuration Database.

However, if you wish to maintain the Configuration Database programmatically you may do

this via the mvEnvironment class.

To instantiate an mvEnvironment object you simply need to use the standard object

instantiation method of your chosen .NET language; e.g. for VB.NET:

localEnv = New mvEnvironment

In the above code, the variable localEnv will be set to the local environment. As part of the

object instantiation, the mvEnvironment object opens a connection to the local Configuration

Database.

The mvEnvironment class constructor has an overload that allows you to specify

programatically the location of the configuration database. This is the same string that would

be present within the ConfigurationPath file. Zero-touch-deployment of an application is a

classic example of where this approach to specifying the location of the configuration

database would be used

As an example of this, say that the configuration database is on a server called Pluto located

in a share called 'MainShare', within a folder called 'mv.NET'. The ConfigurationPath would

thus need to be:

Core Objects Developer's Introductory Guide - Class Library Overview

Page 112

\\Pluto\MainShare\mv.NET

Note, there is no '\Configuration' at the end, this is automatically appended by mv.NET.

To use the mvEnvironment overload, the (VB.NET) code would be:

Dim myEnv As New mvEnvironment("\\Pluto\MainShare\mv.NET")

Dim myAccount As mvAccount = myEnv.Login("SOP") ' the login profile name

In C#

mvEnvironment myEnv = new mvEnvironment("\\Pluto\MainShare\mv.NET");

mvAccount myAccount = myEnv.Login("SOP"); // the login profile name

As an alternative to specifying the location of the configuration database via path, you can

also specify it via the address of the Session Manager. In this case, all access to the

configuration database goes via the Session Manager. If you wish to specify the location of

the configuration database in this manner, it must be done using the form:

Address:Port e.g. Pluto:10013

Where Address is either the IP address or resolvable system name of the server which is

hosting the Session Manager and Port is the port number on which the Session Manager is

listening; i.e.:

Dim myEnv As New mvEnvironment("Pluto:10013")

Property Summary
The mvEnvironment class supports the following methods and properties (Type P = Property,

M = Method):

Name Type Description

Connect M Allows an mvAccount object to be

instantiated via a server and account

profile name

ConnectedViaGateway P Returns a Boolean value indicating

whether the environment instance has

been created using a Gateway connection.

Configuration P Returns an mvConfiguration object

allowing access to the Configuration

Core Objects Developer's Introductory Guide - Class Library Overview

Page 113

Database files. See below.

GatewayURL P The URL of the Gateway being accessed.

LockingStyleDefault P Indicates whether Pessimistic or Optimistic

locking should be the default style for all

database sessions linked to this object.

Login M Allows an mvAccount object to be

instantiated via a login profile name

PersistedGatewaySession Indicates whether the Gateway being used

supports persisted (stateful) sessions.

RemoteConfigDB P

SessionControl P Returns an mvSessionControl object

allowing programmatic control of various

aspects of session management.

SessionManagerAddress P The address of the Session Manager in the

form address:port

SessionManagerHost P The system name or IP address hosting

the Session Manager

SessionManagerPort P The port number on which the Session

Manager is listening

SharedSessionActive P Returns a Boolean value indicating

whether the specified server/account

pairing is currently active as a shared

connection.

Version P The version number of the referenced

Core Objects library.

Class mvConfiguration

This class allows you to access and maintain the contents of the configuration database from

within your own application code.

Member Summary
The mvConfiguration class supports the following interface members:

Name Description

AccountNames Returns a string array containing the names of all

Core Objects Developer's Introductory Guide - Class Library Overview

Page 114

account profiles defined within the configuration

database. There is an overload for this property that

allows the account profiles for only a specific server

profile to be returned.

Accounts Returns an mvFile object allowing access to the account

profiles defined within the configuration database.

Control Returns an mvFile object allowing access to the system

control information - primarily, the session manager

settings.

GatewayNames Returns a string array containing the names of all

gateway profiles defined within the configuration

database.

Gateways Returns an mvFile object allowing access to the gateway

profiles defined within the configuration database.

LoginNames Returns a string array containing the names of all login

profiles defined within the configuration database.

Logins Returns an mvFile object allowing access to the login

profiles defined within the configuration database.

ServerNames Returns a string array containing the names of all server

profiles defined within the configuration database.

Servers Returns an mvFile object allowing access to the server

profiles defined within the configuration database.

SetPassword Allows the first password field of the specified account

profile to be set.

SetPassword2 Allows the second password field of the specified

account profile to be set.

The Account, Servers and Logins properties all allow access to the contents of the

configuration database as if it were stored in a MultiValued database. The sections below

describe the structure of items contained within these 3 files. Data may be accessed from

these files using either attribute position or schema (dictionary) name.

Servers
The Servers property returns an mvFile instance allowing access to a file which contains items

holding server profile definitions. The item ID of items within this file represents the name of

each server profile. The structure of item data within this file is as follows (attributes marked

with an asterisk are only relevant for IP-type connections):

Core Objects Developer's Introductory Guide - Class Library Overview

Page 115

Attribute# Dictionary Name Description

1 DatabaseType The type of multivalued database represented

by this server entry.

2 OSType The underlying operating system hosting the

mv implementation.

3 ConnectionType The type of connection to be used to access

the server.

4 ConnectionAddress The connection specific address to be used to

connect into the server.

5 ConnectionPort The connection specific port number to be

used to connect into the server.

*6 SendStrings A multivalued list of character strings to

transmit to the server during the connection

process.

*7 WaitForStrings A multivalued list of character strings that

should be transmitted back from the server

during the connection process.

*8 TimeoutPeriod The maximum number of seconds to wait for

any one WaitFor string to be received during

the connection process.

*9 CommsDef The low-level communication settings for the

link. See below.

10 KeepAlive A flag indicating how often (if at all) a keep

alive heartbeat transmission should be sent

to the server. '1' = true, '0' = false.

11 DisplayWindow A flag indicating whether a connection

window should be automatically displayed

when a connection to this server is

established. '1' = true, '0' = false.

Please refer to the previous server profile section for details on these fields.

The CommsDef attribute contains an encoded definition of the low-level communication

characteristics for the IP connection to the database. The content of this attribute has the

following format: CHnnn,mmm, where:

C = client to host characteristic

H = host to client characteristic

Core Objects Developer's Introductory Guide - Class Library Overview

Page 116

nnn = client to host chunk size

mmm = host to client chunk size

The client to host characteristic can have the following values:

A = Full 8-bit comms

B = 7-bit transmission of system delimiters

C = 7-bit transmission of control characters

D = 7-bit transmission of system delimiters and control characters

E = Full 7-bit comms

The host to client characteristic can have the following values:

A = Full 8-bit comms

B = 7-bit transmission of system delimiters

Please refer to the communication characteristics section for more details on this topic.

Accounts
The Accounts property returns an mvFile instance allowing access to a file which contains

items holding account profile definitions. The item ID of items within this file takes the form:

servername\accountname, where servername represents the name of a server profile and

accountname represents the name of an account profile within the server profile. The

structure of item data within this file is as follows:

Attribute# Dictionary Name Description

1 Account The 'Account' login parameter.

2 SessionPoolMin Minimum session pool size.

3 SessionPoolMax Maximum session pool size.

4 SessionPoolCon Maximum number of connections.

5 SessionPoolTerm Session inactivity termination setting.

6 <reserved for future use>

7 PurgeSelAge Select list clear down setting.

8 <reserved for future use>

9 PurgeImageAge Read image clear down setting.

10 User The 'User' login parameter.

11 Password The 'Password' login parameter (read-

only).

Core Objects Developer's Introductory Guide - Class Library Overview

Page 117

12 AutoConnect The connect on session manager startup

flag. '1' = true, '0' = false.

13 ShareMode The session sharing mode. 0 = None, 1

= Single session, 2 = Multiple sessions.

14 QueueForSession The Queue for free session flag. '1' =

true, '0' = false.

15 QueuePoll The queuing poll interval setting.

16 Prompt1 The 'Prompt1' login parameter.

17 Prompt2 The 'Prompt2' login parameter.

18 Password2 The 'Password#2' login parameter (read-

only).

19 TmpFileSize The temporary file size setting.

20 TmpFileDelPeriod The temporary session file deletion

period setting.

21 CmdTimeout The default command timeout setting.

22 CacheSchema The file schema caching flag. '1' = true,

'0' = false.

23 FreeUpSession The free-up allocated sessions setting.

Please refer to the previous account profile section for further details on these fields.

Logins
The Logins property returns an mvFile instance allowing access to a file which contains items

holding login profile definitions. The item ID of items within this file represents the name of

each login profile. The structure of item data within this file is as follows:

Attribute# Dictionary Name Description

1 ServerName The name of the server profile to use.

2 AccountName The name of the account profile to use.

Control
The Control property returns an mvFile instance allowing access to a file which contains

various items of control data. The main item here is the session manager settings item,

which has an ID of "SessionManager'. The structure of this item is as follows:

Core Objects Developer's Introductory Guide - Class Library Overview

Page 118

Attribute# Description

1 <reserved>

2 The session manager address

3 The session manager listening port for v2.0 installations

4 Monitor message path

5 Message logging level

6 Housekeep run-time

7 Auto re-start flags

8 Auto re-start time

9 Housekeep on auto re-start flag

10 The session manager listening port for v2.1 installations

11 The session manager listening port for v3.1 installations

12 The session manager listening port for v3.2 installations

13 The session manager listening port for v4.1 installations

14 The session manager listening port for v3.5 installations

15 The session manager listening port for v4.0 installations

16 Maximum number of sessions per cluster

17 Maximum number of clusters

18 Maximum number of concurrent session launches

19 Session Manager recycle period (not used)

20 Session Cluster recycle period (not used)

21 Core Monitor recycle period (not used)

22 Independent housekeeping flag

23 Synchronized housekeeping flag

24 Session Manager 1 address

25 Session Manager 2 address

26 Session Manager 3 address

27 Session Manager 4 address

28 License Manager 1 address

29 License Manager 2 address

30 Logging delete period

31 Statistics delete period

Core Objects Developer's Introductory Guide - Class Library Overview

Page 119

32 Maximum concurrent Connection Monitor instances

These fields are the same ones as maintained by the 'Session Manager Settings' node within

the Data Manager. Please refer to the Data Manager chapter for more information about

these fields.

Gateways
The Gateways property returns an mvFile instance allowing access to a file which contains

items holding gateway profile definitions. The item ID of items within this file represents the

name of each gateway profile. The structure of item data within this file is as follows:

Attribute# Description

1 The URL of the gateway.

2 The login profile name to be used at the remote gateway.

3 Persisted session flag. 0 = Non-persisted, 1 = persisted

These fields are the same ones as maintained by the Gateway nodes within the Data Manager.

Please refer to the Gateway chapter for more information about these fields.

Class mvServer

This class allows access to the configuration details of a specific server profile and allows

access to the accounts held on the server.

The Item method of the mvEnvironment.Servers property returns an mvServer object.

It is unlikely that you will need to use the mvServer class directly, except for maybe easy

retrieval of server profile details. It is mainly there to provide a complete hierarchy with the

class library.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 120

Property Summary
The mvServer class supports the following properties:

Name Description

Account Returns an mvAccount object, the Login method of

which may then be used be establish a database

connection.

ConfigurationDefinition Returns an mvItem object representing the

corresponding server profile entry with the

Configuration Database.

Environment Returns the parent mvEnvironment object.

Class mvAccount

This class represents a specific account on a MultiValued system. It is by using this class'

methods and properties that access to database information is achieved. An application may

utilize several mvAccount objects concurrently.

A connection to an account can be established in one of 2 ways:

By supplying connection information as parameters to the mvAccount object constructor, e.g.

Dim myAccount As New mvAccount(LoginProfileName)

mvAccount myAccount = new mvAccount(LoginProfileName);

Or, by using either the Login or Connect methods of the mvEnvironment class, e.g.

Dim myAccount as mvAccount = myEnvironment.Login(LoginProfileName)

mvAccount myAccount = myEnvironment.Login(LoginProfileName);

Dim myAccount as mvAccount = myEnvironment.Connect(Server, Account)

mvAccount myAccount = myEnvironment.Connect(Server, Account);

Note, using the mvEnvironment class to obtain an mvAccount instance is slightly more

efficient in situations where mvAccount instances are being instantiated on a frequent basis.

This is because the mvAccount constructor automatically creates an mvEnvironment instance

internally during its construction.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 121

The mvAccount constructor and the mvEnvironment Login and Connect methods all contain a

number of overloads which optionally allow the Session Manager address, username,

password, applicationGUID and client ID to be passed, these are explained below:

Session Manager address: This is the address of the Session Manager. This must be passed

if there is not a local configuration database or ConfigurationPath file accessible on the local

system. This must be passed in the form address:port

UserName: The user name to be used during the connection sequence. If this is not required

or is defined as part of the server/account profile it should be passed as an empty string ("")

value.

Password: The password to be used during the connection sequence. If this is not required

or is defined as part of the server/account profile it should be passed as an empty string ("")

value.

ApplicationGUID: An optional unique identification of this application instance. This is only

required in situations where item lists need to be retained within stateless environments, e.g.

web applications.

ClientID: The user-definable identification of this application instance. If left blank, this

defaults to: system name:process name:processID

Method/Property Summary
The mvAccount class supports the following methods and properties (Type P = Property, M =

Method):

Name Type Description

AppSessionGUID P The unique identifier for this login

session.

CallProg M Calls a cataloged MultiValued DataBASIC

subroutine.

CallProgViaExecute p Boolean which when True indicates that

the CallProg method is to be performed

within a new execute level on the database

server. This can help avoid common area

conflicts.

CommandTimeoutPeriod P The default maximum wait period for a

response back from the MultiValued server

upon issuing any form of request/action.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 122

Defaults to 30 seconds.

Connected P Indicates whether this mvAccount instance

holds a connection to a database session,

Environment P The mvEnvironment object associated with

this instance.

Execute M Executes any command-line statement.

FileClear M Clears all items in a file

FileCount M Counts the number of items in a file

(optionally with selection criteria).

FileCreate M Creates a new file.

FileDelete M Deletes a file.

FileList M Returns the list of visible file names within

the account.

FileOpen M Opens a specific file and, if successful,

returns an mvFile object connected to that

file.

FileOpenBool M Same as FileOpen method but,

additionally, returns a boolean value

indicating success or failure.

FileVisibility P Allows programmatic control over whether

a file should appear in the FileList

property.

ListDelete M Deletes a previously stored save-list.

ListGet M Retrieves a previously stored save-list in

to an mvItemList object.

ListRestore M Re-establishes a previously saved

mvItemList (for stateless applications).

LockingStyleDefault P The default locking scheme to be used by

all methods relating to the creation and

release of item locks.

Login M Establishes a login session to the account.

Logout M Logs out (disconnects) from the account.

Name P The name of the account (i.e. the name of

the account profile used to connect into

the account).

Port P The MultiValued server port number

associated with this session.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 123

ProgSelect M Allows a cataloged MultiValued DataBASIC

subroutine to be used to supply the

required list of item IDs. This subroutine

must support 3 arguments:

1. INPUTARG – the string passed into

the ProgSelect method call.

Structure and use of this to be

decided by the developer but MUST

NOT contains AM or VM characters

2. ITEMIDS – a returned AM delimited

list of required item IDs

3. ERRMSG – to be set to a non-blank

value if an error is encountered,

i.e. a description of the error.

QueryRun M Executes a predefined query, returning an

mvQueryList object.

ReleaseAllLocks M Releases all item locks for the host

MultiValued system.

RetrievalSizeDefault P The default initial retrieval size for

selection actions. Defaults to 200.

RetrieveIDsOnlyDefault P Sets/returns whether only items IDs

should (by default) be initially retrieved

during selection actions. Defaults to

False.

SchemaCaseSensitivity P Allows control over whether reference to

field data via schema name is case

sensitive.

Select M Executes any command-line statement

that exits with an active a select list.

Server P The parent mvServer object.

SessionSharing P Indicates whether the associated account

profile is defined to use session sharing.

TransAbort M Rolls-back all transactions performed

within the current transaction boundary.

TransCommit M Commits all transactions performed within

the current transaction boundary.

TransQuery P Indicates whether a transaction boundary

is active.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 124

TransStart M Initiates the opening of a transaction

boundary.

Class mvFile

This class represents a single database file (dictionary or data portion). It is by the use of this

class' methods and properties that access to all dictionary and data information within an

individual file is achieved.

An mvFile instance is obtained by using the FileOpen method of the mvAccount class.

Method/Property/Event Summary
The mvFile class supports the following methods and properties (Type P = Property, M =

Method, E=Event):

Name Type Description

Account P The parent mvAccount object.

BulkUpdateAbort M Indicates that bulk updating mode is to be

aborted. Any outstanding bulk update writes are

lost.

BulkUpdateErrors E Raised if bulk updating writes generate a database

error.

BulkUpdateFinish M Indicates that bulk updating mode is to be exited.

Any outstanding bulk update writes are written to

the database.

BulkUpdateInProgress P Indicates whether bulk updating mode is active.

BulkUpdateSize P The number of items to be written to the database

on each round-trip. Defaults to a value of 200.

BulkUpdateStart M Indicates that bulk updating mode is to be started.

See 'Additional Notes' section below for more

details.

Clear M Deletes all items from the file.

Count M Counts the number of items in the file (optionally

with selection criteria).

Delete M Deletes a specific item from the file.

IndexSelect M Returns an mvItemList object representing all or a

subset of items (and associated data) within the

Core Objects Developer's Introductory Guide - Class Library Overview

Page 125

file as ordered by a secondary index.

NewItem M Returns a new mvItem object associated with the

file (note, no item is created within the database

until this item is explicitly written).

Name P The name of the file; e.g. CUSTOMERS or DICT

PRODUCTS

ProgSelect M Allows a cataloged MultiValued DataBASIC

subroutine to be used to select items into an

mvItemList.

QSelect M Uses the contents of an item (or part of) as the

source of item IDs. It returns an mvItemList

object based on the retrieved list of item IDs.

Read M Reads (without locking) a specific item from the

file, returning a reference to an mvItem object

(holding the item data).

ReadBool M Same as Read method but returns a boolean value

indicating success or failure.

ReadU M Same as Read method, but also places a lock on

the item.

ReadUBool M Same as ReadBool method, but also places a lock

on the item.

ReadV M Reads (without locking) a specific attribute

number from a specific file item.

ReadVBool M Same as ReadV method but returns a boolean

value indicating success or failure.

ReadVU M Same as ReadV method, but also places a lock on

the item as a whole.

ReadVUBool M Same as ReadVU method but returns a boolean

value indicating success or failure.

Release M Releases one or all item locks for the file.

Schema P Returns an mvSchema object representing the

associated schema definitions of the file.

Select M Returns an mvItemList object representing all or a

subset of items within the file.

Write M Writes an mvItem object to the file, releasing any

locks held on the specified item ID.

WriteU M Same as Write, but without the lock release action.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 126

WriteV M Writes a value to a specific attribute number

within a specific file item, releasing any locks held

on the specified item ID.

WriteVU M Same as WriteV, but without the lock release

action.

Additional Notes
The following sections provide additional information relating to the use of the above mvFile

class interface members

Bulk Updating
Bulk Updating allows you to optimize the writing of database items by reducing the number

of round-trips to the database server. Instead of each write action resulting in a round-trip,

write details are buffered internally by mv.NET at the client and are only sent to the database

once a (user-definable) number have occurred.

Below is a VB.NET code snippet which shows the use of bulk updating:

Dim WithEvents myFile As mvFile

Sub Test()

 myFile = myAccount.FileOpen("ORGANIZATION")

 myFile.BulkUpdateSize = 100

 myFile.BulkUpdateStart()

 ' ... perform lots of mvItem.Write actions here

 myFile.BulkUpdateFinish()

End Sub

Private Sub myFile_BulkUpdateErrors(ByVal ErrorItems As

System.Collections.ArrayList, ByVal ErrorMsgs As

System.Collections.ArrayList) Handles myFile.BulkUpdateErrors

 ' ... report/log errors here

End Sub

The above code illustrates the use of the bulk update start and finish methods before and

after the required item writes. If not set explicitly, the BulkUpdateSize property defaults to a

value of 200. You can use this property to fine tune the bulk updating process - a higher

size results in fewer database server round-trips but consumes more client memory and

results in larger message sizes being sent to the database.

The BulkUpdateErrors event is fired if any database write errors occur. The ErrorItems

argument holds an ArrayList of mvItem objects representing the items which failed to be

Core Objects Developer's Introductory Guide - Class Library Overview

Page 127

written to the database. The ErrorMsgs argument holds a respective list of error messages

for each corresponding entry in ErrorItems list.

Exploded Selecting
Since one of the primary features of a Multivalued database is to allow the nesting/repeating

of data within a single record, an important requirement is to allow selections to be made

against this nested data. Such selecting must support the concept of partial selection of

nested data based on selection criteria; that is, to support the concept of the selection

results, in effect, only returning partial data content of the overall selected items. This

feature is known as 'exploded selecting' since most Multivalued databases explode (or flatten)

the contents of items before performing the selection process. The resulting data is

presented in flattened form with none qualifying multivalues omitted.

mv.NET supports the concept of exploded sorting via the SelectByExp method of the

mvAccount and mvFile classes. The basic concept is that you specify which fields are to be

exploded and the selection criteria to be applied during the selection process. It is assumed

that all fields which are exploded are associated in that each of their multivalue lists are

ordered and related in unison.

The result of the SelectByExp method is an mvItemList. This list presents the illusion of each

row of exploded data being a separate item. However, internally, mv.NET tracks the fact that

each item in the list is, in fact, an item fragment and if items are amended and written back

to the database, mv.NET will only update the associated portion of the item on file. This,

thus, gives the developer the best of both worlds - being able to access a filtered view of item

data whilst still being able to update data content.

The SelectByExp method has several overloads, each of which is explained below.

Public Function SelectByExp(ByVal PrimaryExplodeField As String, ByVal

SecondaryExplodeFields As String) As mvItemList

This overload will select all items in the file, returning an exploded view based on the content

of the PrimaryExplodeField argument.

Public Function SelectByExp(ByVal PrimaryExplodeField As String, ByVal

SecondaryExplodeFields As String, ByVal SortType As ExpSortType, ByVal

ExplodedSelection As String, ByVal NonExplodedSelection As String, ByVal

DictionaryList As String, ByVal Attributes As String) As mvItemList

Core Objects Developer's Introductory Guide - Class Library Overview

Page 128

This overload will select a sub-set of items. The ExplodedSelection argument needs to be set

to the select clause which is to be applied to the PrimaryExplodeField. The

NonExplodedSelection will be applied to the rest of the item content. The DictionayList and

Attributes arguments allow partial data retrieval to be performed.

Public Function SelectByExp(ByVal PrimaryExplodeField As String, ByVal

SecondaryExplodeFields As String, ByVal SortType As ExpSortType, ByVal

ExplodedSelection As String, ByVal NonExplodedSelection As String, ByVal

DictionaryList As String, ByVal Attributes As String, ByVal SelectControl As

mvSelect) As mvItemList

This overload works exactly as the previous one except that the Preselection and UsingDict

properties of an mvSelect instance can be utilized during the selection process.

Class mvItem

This class represents an multidimensional MultiValued dynamic array – typically representing

an item within a file. As such, it interprets any embedded ASCII 254 (attribute mark), 253

(value mark) and 252 (subvalue mark) codes as special data element delimiters.

An mvItem instance will typically be obtained using the Read method of the mvFile class,

although it also has a publicly accessible constructor that is overloaded to receive an initial

string value.

Method/Property Summary
The mvItem class supports the following methods and properties (Type P = Property, M =

Method, E = Event):

Name Type Description

AfterModified E Fires after the contents of an item have been modified.

AssignDefaults M Assigns default values to attributes within the item as

defined by extended dictionary details.

BeforeModified E Fires just before the contents of an item are about to be

modified.

Clone M Returns a new instance copy (clone) of the mvItem object.

Contents P The entire (raw) physical data content of the item.

Count M Counts the number of occurrences of a string within all or

Core Objects Developer's Introductory Guide - Class Library Overview

Page 129

part of the item.

Data P Provides access to all sections of data within an item

based on either physical storage position or dictionary

name. This property is the default indexer for the class.

DataAsArray M Allows (read-only) access to data as an array. Intended

for use within For-each loops.

DataAsString M Allows (read-only) access to data, returning values as

strings, formatting in accordance with dictionary

definitions.

DataRaw M Allows (read-only) access to raw (unformatted) data

based on dictionary name.

DCount M Counts the number of occurrences of delimited cells

within all or part of the item.

Delete M Deletes a specific element from the item.

DictionaryList P The list of dictionary field names whose values were

retrieved along with the raw data of the item.

Dispose M Allows the server-resident read image data and locks for

this item to be explicitly deleted/cleared.

Field M Returns one or more attribute/value/subvalue

occurrences from with the item's data content.

File P The parent mvFile object (set automatically if the item

was created via an mvFile IndexSelect, Read or Select

method call.

GroupInsert M Allows a value to be inserted into a group of associated

values.

GroupDelete M Allows a value to be deleted from a group of associated

values.

IConv M Returns a value by applying a MultiValued input

conversion code to a data value within the item.

ID P Returns the ID of the item.

Index M Returns the position of a character or characters within all

or part of the item.

IndexEntry P Returns the index value associated with the item for items

retrieved via an mvFile's IndexSelect method.

Insert M Inserts elements into the item's contents.

InvalidatedCalc

ulations

P The list of calculated values that are currently invalid due

to dependent data change.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 130

ItemList P The parent mvItemList (for items retrieved via a selection

method).

Locate M Finds the position of an element within a specified

dimension of the item.

Lock M Places a lock on the item.

LockStyle P The style of locking used when the item was read.

Modified P Indicates whether any of the item's data content has been

amended since it was originally read or last written

(whichever is the most recent).

OConv M Returns a value by applying a MultiValued output

conversion code to a data value within the item.

QSelect M Uses the contents of all or part of the item as the source

of item IDs. It returns an mvItemList object representing

the supplied list of item IDs.

Recalc M Regenerates any dictionary-derived data. A list of

dictionary names can be passed with this method to

restrict the action to a subset of calculated fields.

Refresh M Re-reads the data of the item. If dictionary-derived data

is being held, this is also regenerated.

Release M Release the lock on the item.

Replace M Replaces a specified data element within the item.

Sort M Allows the contents of an item to be sorted.

Text P Same as the Data property, but with data cell delimiters

replaced with specified character(s).

Write M Writes the item to a file, releasing any locks held on the

specified item ID. This is only available if the File

property contains a reference.

WriteU M Same as Write, but without the lock release action.

Unlock M Same as Release method.

Class mvSelect

This class is provided in order to allow advanced selection details to be conveniently supplied

to the following methods:

Core Objects Developer's Introductory Guide - Class Library Overview

Page 131

mvAccount.Select

mvAccount.ProgSelect

mvAccount.ListGet

mvFile.IndexSelect

mvFile.QSelect

mvFile.Select

The provision of an mvSelect object to any of the above method calls is optional, but if

present, allows a simple, powerful and flexible way of specifying advanced selection criteria.

Most of the properties supported by the mvSelect object are optional, only the ones of

relevance to the selection context need be set.

Usage Syntax

The following code illustrates the use of an mvSelect object in a Select method call of an

mvFile object:

Dim Customers As mvFile

Dim UKCustomers as mvItemList

Dim criteria as New mvSelect

Customers = SOPAccount.FileOpen("CUSTOMERS")

criteria.SelectionClause = "WITH COUNTRYCODE = ""44"""

criteria.DictionaryList = "PRIMARYCONTACT PRIMARYTELNO"

criteria.RetrievalStyle = RetrievalStyle.PartialDataInitiallyRestOnDemand

criteria.RetrievalSizeInitial = 100

criteria.RetrievalSizeOnDemand = 50

UKCustomers = Customers.Select(criteria)

The above code opens the CUSTOMERS file and then selects all items from this file with a

COUNTRYCODE attribute value of '44'. After the items have been selected, the item data

(along with the values of the PRIMARYCONTACT and PRIMARYTELNO dictionary fields) of the

first 100 items are returned - the rest of the selection data being held on the server. As data

is consumed by the client, additional selection data is retrieved as required from the server in

batches of 50 items at a time.

Property Observance
Not all properties of the mvSelect class are used/observed by all selection methods. Below is

a list of the properties which will be used by each of the possible selection methods.

mvAccount.Select

The mvAccount.Select method observes all of the mvSelect properties except for SelectClause

and SortClause. This is because it is assumed that the SelectCommand argument of this

method contains a fully formed selection command containing the required selection and sort

criteria.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 132

mvAccount.ProgSelect

The mvAccount.ProgSelect method observes all the mvSelect properties. If the PreSelection

property is supplied, it will be applied to the item IDs returned by the user supplied

subroutine.

mvAccount.ListGet

The mvAccount.ListGet method observes the following mvSelect properties:

Attributes

DictionaryList

FileName

IDsOnly

RetrievalSizeInitial

RetrievalSizeOnDemand

RetrievalStyle

mvFile.IndexSelect

The mvAccount.Select method observes all the mvSelect properties except for the following:

FileName

SelectClause

SortClause

PreSelection

SaveListName

SaveListOnly

mvFile.Select

The mvFile.Select method observes all the mvSelect properties.

mvFile.QSelect

The mvAccount.QSelect method observes all the mvSelect properties. If the PreSelection

property is supplied, it will be applied to the supplied list of item IDs.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 133

Property Summary
The mvSelect class supports the following properties

Property Name Description

AllowNoItems Allows control over whether an exception is raised if no

items are selected.

DisableCaching Forces item data to be continually read on demand, with

no internally caching of items read. If set to True,

internal memory resource usage is kept to a minimum

(at the cost of retrieval performance).

DictionaryList The (space delimited) list of dictionary field names

whose values are to be retrieved along with the raw data

of the item.

FileName The name of the file to process.

IDsOnly Boolean value indicates whether only item IDs are to be

returned as a result of the selection.

PreSelection A command level statement that pre-selects the list of

items IDs to be processed. This can be any command

that exits leaving an active select list.

RetrievalInterval The frequency of background item list population.

RetrievalSizeInitial The number of items to be returned to the client initially

on completion of the selection process.

RetrievalSizeOnDemand The number of items to be returned to the client on each

subsequent round-trip to the server to retrieve further

selected items.

RetrievalStyle The style of data retrieval to be used.

RetrievalThreads The number of additional threads that are to be used to

retrieve data in the background. This is only relevant for

a RetrievalStyle setting of

PartialDataInitiallyRestInBackground

SaveListName The name of the save-list to generate as a result of the

selection

SaveListOnly Boolean value indicating whether only a save-list is to be

generated - i.e. no data is to be returned.

SelectionClause The selection criteria to apply during the selection

process.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 134

SortClause The sort criteria to apply during the selection process.

UsingDict The name of the alternative dictionary to use in the

selection.

Class mvItemList

This class represents a sequence of items selected from a file. It allows this list to be

traversed sequentially or by absolute position.

Method/Property Summary
The mvItemList class supports the following methods and properties (Type P = Property, M =

Method) :

Name Type Description

Add M Adds an mvItem object at a specified position within

the list.

Calculate M Allows a field within the item list content to be totaled,

averaged as well as minimum and maximum value

calculated.

ClearCache M Clears all cached items within the list.

Clone M Creates a new instance copy (clone) of an mvItemList

object.

Count P Returns the total number of selected items. If the

mvItemList object has been created via an mvFile’s

IndexSelect method, the number of items that have

been read from the index so far is returned.

CurrentItem P The item indicated by the current cursor position

within the list.

CursorPos P The current cursor position within the list.

DataTable M Returns an mvDataTable object. See mvDataTable

section below

DictionaryList P The list of dictionary field names whose values were

retrieved along with the raw data of items.

EOL P Indicates whether the end of the list has been reached.

File P The parent mvFile object (set automatically if the item

list was created via a selecting method call.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 135

ID P Returns the item ID of an mvItem object at a given

position within the list.

IndexDerived P Indicates whether the item list has derived from an

index (True) or if it has been derived from a selection

(False).

IndexRetrieved P Indicates whether a specific item within the list has

been retrieved into the list cache.

Item P Returns an mvItem object at an absolute position

within the list.

MoveNext M Moves the list's cursor to the next item in the list.

MovePrev M Moves the list's cursor to the previous item in the list.

Persist P Indicates whether the item list should be preserved on

the server when the mvItemList object is destroyed.

ReadNext M Retrieves the next mvItem entry in the list.

ReadNextBool M Retrieves the next mvItem entry in the list returning a

boolean value indicating success or failure.

ReadNextID M Retrieves the next item ID in the list.

ReadPrev M Retrieves the next mvItem entry in the list.

ReadPrevBool M Retrieves the next mvItem entry in the list returning a

boolean value indicating success or failure.

ReadPrevID M Retrieves the next item ID in the list.

Remove M Removes (and optionally deletes from the database) an

mvItem object in the list at a specified position.

Reset M Repositions the list's cursor to the first entry in the list.

RetrievedSoFar P The number of items physically retrieved into the item

list so far.

SelectControl P Returns the mvSelect object that was used to control

the selection process used to create the item list.

State P Sets/returns the current state of the item list. This can

be used to persist/reinstate item selections in stateless

environments.

WriteModifiedItems P Writes all items within the list that have a Modified

property value of True to the database.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 136

Class mvSchema

This class represents a file's dictionary schema – it is exposed by the Dictionary property of

the mvFile class. It is different to an mvFile object which has been opened on the dictionary

portion of a file in that the mvSchema class presents the dictionary as a collection of (highly

structured) mvSchemaItem objects – see next section for more details on the mvSchemaItem

class.

Method/Property Summary
The mvSchema class supports the following methods and properties (Type P = Property, M =

Method) :

Name Type Description

Add M Adds a new mvSchemaItem object to the collection

(and optionally writes its content to the dictionary

portion of the associated database file).

BooleanTest M Allows a test to be performed to check whether a

specified value is regarded as a True or False value

for a specified dictionary name.

ContainsKey P Indicates whether a specified dictionary name

exists in the collection.

Item P Returns an mvSchemaItem occurrence from the

collection based on either position or name.

ItemIDField P Returns the mvSchemaItem which represents the

item ID of the associated file.

Load M Forces the collection of mvSchemaItem objects to

be reloaded from the database.

MembersOf M Allows the names of all dictionary items belonging

to a specified mv or sv group to be obtained.

MVGroupOf M Allows the MultiValued group of a specified

dictionary name to be obtained.

NamesFromAttrPos M Allows the list of dictionary name representing a

specified attribute to be obtained.

NewItem M Returns a new mvSchemaItem (which is

automatically mapped to this mvSchema).

Remove M Removes a specified mvSchemaItem from the

collection (and optionally from the associated

database file).

Core Objects Developer's Introductory Guide - Class Library Overview

Page 137

Class mvSchemaItem

This object represents a dictionary definition item within the dictionary portion of a file. It

may be used to access both the native and extended dictionary definitions of a field.

Extended Dictionary Definitions
Each native dictionary definition within the dictionary portion of a file allows users and

developers to refer to the attributes of data within an item by name as well as physical

storage position. These native definitions are obviously used by many of the tools and

commands available on a MultiValued platform.

mv.NET, however, allows you to augment the relatively limited set of definition data within

native definitions with what are known as extended dictionary definitions. An extended

dictionary definition is stored within the same dictionary portion of a file under the same ID

as the native definition that it extends but with curly braces at the start and end of the ID.

For example, native dictionary item NAME would have its extended definition stored as

{NAME}.

Extended definitions are only used by mv.NET and are used in conjunction with native

definitions, NOT instead of – native definitions are still very important to mv.NET. The extra

definition data within extended definitions allows various aspects of mv.NET to better

understand the structure and type of data within an item, the relationships between attributes

of data within the same item and also between items of data across different files.

It is not necessary to create extended definitions to use mv.NET, but as you start to use the

more powerful aspects of the product, you will find it worthwhile to invest a little time and

effort in creating extended definitions.

The easiest way to create extended dictionary definitions is by using the Schema Editor within

the Data Manager, however, you can also create and maintain both native and extended

definitions using the mvSchema and mvSchemaItem classes within Core Objects.

For further information on extended dictionary definitions please refer to the chapter

dedicated to this topic.

Referring to Attributes by Name
The mvItem class within Core Objects provides a number of properties allowing you to supply

either an attribute position or a dictionary name in order to refer to a particular field of data;

an example of this being the Data property.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 138

If you supply a dictionary name to one of these properties, Core Objects will follow the

following list of steps to ascertain which physical piece of data is being referred to:

1. Check if the specified dictionary name is in the list of item values that have been

retrieved by name in the original fetch of item data. If so, return the retrieved data

field.

2. Load the dictionary portion of the file if it has not already been loaded. Note, the

FileOpen method of the mvAccount class allows you to explicitly request the load of

a file's dictionary at the same time as opening it, otherwise it will be done on

demand. The loading of a file's dictionary will result in both native and extended

definitions being passed to the client. It is the 'loading' of a file's dictionary that

results in the mvSchema property of an mvFile object being populated.

3. If the specified dictionary name is not found within the loaded dictionary, raise an

exception.

4. If the specified dictionary name refers to a non-calculated field of data, use the

definition to retrieve the relevant value.

5. Perform a round-trip to the server to retrieve the specified value based on dictionary

name (this will force the native dictionary definition to be used on the server to

retrieve the appropriate value).

Method/Property Summary
The mvSchemaItem class supports the following methods and properties (Type P = Property,

M = Method). Note, all properties that start with 'Input' are only used by the data binding

aspects of the Binding Objects components and are not used when values are assigned to an

mvItem instance programmatically.

The mvSchemaItem will interpret the contents of a native definition as best it can, and, in the

absence of an extended item, will provide a limited set of properties describing the field. In

the summary table below, the property names flagged with an asterisk are the properties that

will be supported if only a native definition item is found. All the other properties are only

supported if an extended definition item is present.

Name Type Description

AttrPos * P The physical attribute position represented by this

dictionary item. Returns 0 for calculated items.

BaseDependencies P The list of non-calculated dictionary items that this

field is dependent upon. Returns an attribute

delimited string of names. Only relevant for

calculated fields.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 139

BooleanFalse P The string value that represents a logical True

value for this field.

BooleanTrue P The string value that represents a logical false

value for this field.

ConversionCode * P The conversion code that will be applied to the raw

item value to generate the displayable value. This

code is also used in the opposite direction, i.e. the

conversion of a displayable value to a raw (internal)

item value.

CorrelativeCode * P The code that will be applied to the raw item value

to generate the value to be used in any file

processing commands.

DataType * P The data type of the field. See following Common

Enumerators section.

DataTypeCheck M Returns a Boolean value indicating whether the

supplied value represents a valid data type for this

field.

Dependencies P The complete list of dictionary items that this field

is dependent upon. Returns an attribute delimited

string of names. Only relevant for calculated

fields.

Extend M Forces the initial set of extended properties for

this item to be generated based on the native

definition.

ExtendedDefinition P The raw extended definition item.

GUID P A unique identifier for this dictionary item

independent of name. This is assigned on

dictionary load.

InOptionsCheck M Returns a Boolean value indicating whether the

supplied value represents a value that is present

within the InputOptions property.

InputCaseAdjust M Adjusts a supplied value in accordance with the

setting of the InputCasing property setting.

InputCasing P The upper/lower casing specification for the field.

See following Common Enumerators section.

InputDefault P The default value for the field.

InputInOptions P Indicates whether any supplied values for this field

have to be present within the InputOptions

Core Objects Developer's Introductory Guide - Class Library Overview

Page 140

property.

InputMandatory P Indicates whether this field may be left blank.

InputMax P Indicates the maximum allowable value for this

field. This property returns a string representation

of this value.

InputMaxValue P Indicates the maximum allowable value for this

field. This property returns an object cast

according to the DataType of the field.

InputMin P Indicates the minimum allowable value for this

field. This property returns a string representation

of this value.

InputMinValue P Indicates the minimum allowable value for this

field. This property returns an object cast

according to the DataType of the field.

InputOptions P The list of valid values for this field. This returns a

MultiValued list of valid values.

InputPrompt P The default input prompt for the field.

IsCalculated P Indicates whether the field represents a calculated

(derived) value.

IsExtended P Indicates whether an extended definition exists for

this field.

Justification * P The default display justification for this field. See

following Common Enumerators section.

LinkedFile P The file to which this field holds item Ids.

LinkedFileCheck M Returns a Boolean value indicating whether the

supplied value represents a valid item ID within the

file indicated by the LinkedFile property.

LinkedFileDescField P The default descriptive attribute within associated

item within the linked file.

LinkedFileIDField P The attributes representing the item ID within the

linked file.

LinkedFileProperty P The name to be used for a property relating to the

linked file within Solution Objects.

Modified P Indicates whether (non-saved) modifications to the

loaded definition exist.

MaxValueCheck M Returns a Boolean value indicating whether the

supplied value represents a value which is equal to

or less than the InputMaxValue property.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 141

MinValueCheck M Returns a Boolean value indicating whether the

supplied value represents a value which is equal to

or less than the InputMinValue property.

MVGroup P The logical (associative) multivalue group to which

this field belongs.

MVType P Indicates whether this field is MultiValued. See

following Common Enumerators section.

Name * P The name of the dictionary item.

NativeDefinition * P The raw item string of the native definition.

NativeType * P Indicates the type of native definition, e.g. 'A' type

definition, or 'V' type definition.

RecalcDef P The local recalculation definition.

RecalcLocal P Indicates that the RecalcDef property should be

used to recalculate the value of the field if any of

its base fields (the fields upon which it depends)

change.

Schema P The parent mvSchema object for this

mvSchemaItem instance.

SVGroup P The logical (associative) subvalue group to which

this field belongs.

Title * P The display (report) title of this field.

ToString P Returns the same value as the Name property.

U2FORMAT * P For UniData and Universe style definitions (D, I and

V types), this property returns attributes 5 of the

definition.

Width * P The display (report) width of the field.

Write M Writes the dictionary definition back to the

database.

Class mvDBRPC

This class can be used to implement database server triggered calls to .NET resident

components. Examples of this might be:

• Generating documents via a Windows based application when certain events occur, or

options are chosen within the database server environment or green-screen application.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 142

• Moving data from a MultiValued database to SQL when certain events occur or a certain

period of time elapses.

There are 2-parts to implementing database remote procedure calls. The first is to

instantiate one or more mvDBRPC instances within the .NET environment, i.e. within your .NET

application. Doing this will initiate polling against a specified file or files (termed the "trigger"

file) on the database server. Database server routines are then able to write items to the

trigger file and these will be automatically picked up by the polling mvDBRPC instances which

will then raise an event to indicate the appearance of these items.

The code snippet below illustrates the instantiation of an mvDBRPC object and the handling

of the event which is raised when an item appears in the 'DBRPC' database file:

Dim RPCTracker As New mvDBRPC("SOP", "DBRPC", 1000, 3)

AddHandler RPCTracker.RPCRequested, AddressOf RPC

Private Sub RPC(ByVal Sender As mvDBRPC, ByVal RPCItems As mvItemList)

 For Each rpc As mvItem In RPCItems

 ' Perform some really useful action here

 '

 Console.WriteLine("RPC:" & rpc.Contents)

 Sender.RPCCompleted(rpc.ID)

 Next

End Sub

In the above code, the arguments to the mvDBRPC constructor indicate that the DBRPC file in

the SOP account is to be scanned every 1000 milliseconds for the appearance of new items.

When a new item appears, its contents will be passed via the RPCItems argument of the

RPCRequested event. The last argument in the constructor ("3") indicates that a maximum of

3 RPCs are to be collected with each poll of the server. A value of -1 indicates all new RPCs

will be collected. It is by using this last argument that multiple processes or threads may

work in unison to improve RPC throughput performance.

The call to the RPCCompleted method of the mvDBRPC object will result in the item being

deleted from the DBRPC file. The server routines may thus, if required, detect successful

execution of the rpc.

If the rpc fails, the RPCFailed method may be called, which will result in an attribute

containing the string "RPC Failed : " and a description of the error being concatenated to the

front of the rpc item within the trigger file.

The mvDBRPC class also supports the concept of "throttling back" the frequency of polling

against the trigger file. At the point in time where a specified number of contiguous polls of

Core Objects Developer's Introductory Guide - Class Library Overview

Page 143

the trigger file have returned no items to process, the frequency of polling can be adjusted to

occur at longer intervals. When a trigger item is subsequently found, the frequency of polling

is reset back to the original (more frequent interval) and whole process starts again.

Method/Property Summary
The mvDBRPC class supports the following interface members (Type P = Property, M =

Method, E = Event) :

Name Type Description

Account P The mvAccount instance being used or to be used by

the mvDBRPC instance for its database polling activity.

This property will return null if an mvAccount instance

was not passed as part of its constructor.

RPCFileName P The name of the database file where RPCs will be

created.

LoginName P The login profile name used to connect to the required

database account.

PollInterval P The number of milliseconds to wait between polls of

the database RPC file.

PollIntervalAfterThrottleback P The (longer) polling interval (in milliseconds) to be

used after throttling back has occurred - see

ThrottleBackThreshold property. The value of this

property defaults to PollInterval * 5

MaxRPCsToProcess P The maximum number of RPCs to extract from the

server.

RPCCompleted M Allows successful completion of the RPC to be

communicated back to the database server.

RPCFailed M Allows unsuccessful completion of the RPC to be

communicated back to the database server.

RPCRequested E Indicates that one or more new RPCs have been

detected within the RPC file.

RPCError E Indicates that the mvDBRPC object has encountered an

internal error.

ThrottleBack M Allows throttling back to be activated

programmatically.

ThrottleReset M Allows throttling back to be cancelled

Core Objects Developer's Introductory Guide - Class Library Overview

Page 144

programmatically.

ThrottleBackThreshold P Indicates when the longer poll interval (held in

PollIntervalAfterThrottleback) should kick in. It

indicates the number of contiguous (zero-item

returning) scans of the trigger file after which the poll

interval will be set to PollIntervalAfterThrottleback. If

ThrottleBackThreshold is < 1, no throttling back will be

performed. When items are subsequently found in the

trigger file, the polling interval is set back the original

PollInterval property value. . The value of this property

defaults to 50.

Class mvDataTable

This class is provided to allow 3rd party controls to be bound to multi-value data via standard

.NET databinding interfaces.

The mvDataTable class subclasses the .NET DataTable class – i.e. it inherits from it.

Therefore, all the interface members of the DataTable class are supported by this class.

However, the mvDataTable class also supports some additional members that are provided to

allow an extra degree of control over its usage. Only these extra members are listed in the

following table.

An mvDataTable object instance is obtained via the DataTable method of an mvItemList

instance; for example:

Dim fileProducts As mvFile = myAccount.FileOpen("PRODUCTS")

Dim products As mvItemList = fileProducts.Select()

Dim mvDT As mvDataTable = products.DataTable

In fact, the above three lines could be combined into 1 single statement:

Dim mvDT As mvDataTable = myAccount.FileOpen("PRODUCTS").Select.DataTable

To bind a third party control to an mvDatatTable, simply set the DataSource property of the

control to the mvDataTable object:

C1FlexGrid1.DataSource = mvDT

Core Objects Developer's Introductory Guide - Class Library Overview

Page 145

There are several important things to note about mvDataTable objects. Firstly, the

instantiation of an mvDataTable object (via the mvItemList.DataTable method) will force all

data in all items within the item list to be retrieved from the server. Secondly, the

mvDataTable object has only 1 way of forcing modified rows to be saved to the database -

this is via its WriteModifiedRows method. Thirdly, the mvItemList used to instantiate the

mvDataTable object is kept in-sync with the modifications made to the mvDataTable.

Method/Property Summary
The mvDataTable class supports the following methods and properties (Type P = Property, M

= Method) :

Name Type Description

ItemList P The parent mvItemList object used to instantiate

the mvDataTable object.

WriteModifiedRows M Forces all rows that have been modified within the

mvDataTable object to be written to the database.

Class mvQueryList

This class allows queries defined using the Data Manager application to be executed within

your application code. It presents the results of the query in the form of a collection of rows,

each comprising a collection of column values.

The Data Manager chapter contains a section which covers the creation and content of query

definitions. Note, the Binding Objects module of mv.NET contains an mvQuery control which

can also be used to incorporate queries into your application. Internally, the mvQuery control

uses an mvQueryList object.

Property Summary
The mvQuery class supports the following properties:

Name Description

Row Allows one row of query data to be retrieved. Returns an

mvQueryRow object. See below.

Count The total number of query rows. The value returned by

this property will depend on the HideLevel property

setting.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 146

HideLevel The current level of detail line hiding. The is the

subtotaling level below which no detail lines are shown. A

value of 0 indicates no detail hiding.

SelectedIndex The row number currently selected. 1-based index.

Column Returns a single query column definition in the form of an

mvQueryColumn object. See below.

Columns Returns a collection of mvQueryColumns objects

representing all of the columns definitions within a query.

QueryDefinition The query definition. Returns an mvItem object

representing the query definition item from the query

definition file.

File The source of data items for the query. Returns an mvFile

object.

The following constituent classes are used in the presentation and storage of query definition

and data:

mvQueryRow

mvQueryColumn

mvQueryColumns

These are detailed in the following sections.

Class mvQueryRow

This class allows access to the data on one specific query line. Instances of this class are

obtained via the Row property of the mvQueryList class.

Property Summary
The mvQueryRow class supports the following properties:

Name Description

Value Allows access to a specific column value of the row via

either physical position or column title

BreakLevel The detail level of this line a query data. Zero indicates

bottom level (base) data. Greater than detail indicates

than this query line holds subtotaling data.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 147

Class mvQueryColumn

This class allows access to the column definition of one specific column definition within the

query. Instances of this class are obtained via the Column or Columns properties of the

mvQueryList class

Property Summary
The mvQueryColumn class supports the following properties:

Name Description

Index The position of the column within the list of column

definitions. 1-based index.

Title The title of the column.

Width The default with (in characters) of the column.

Alignment The data alignment within the column. Returns a

DictionaryJustification enumeration:

 LeftAlign = 0

 RightAlign = 1

 CenterAlign = 2

Class mvQueryColumns

This class allows access to all of the column definitions within the query.

Property Summary
The mvQueryColumns class supports the following properties:

Name Description

Item Returns an mvQueryColumn object representing one

specific column definition within the query

Count The number of columns within the query. 1-based index.

The mvQueryColumns class implements the IEnumerable and IEnumerator interfaces allowing

access to its content via For/Each programming constructs.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 148

Class mvSessionControl

This class allows programmatic control of the database session pooling. By obtaining an

instance of this class you may query and terminate the current contents of the database

session pool.

Method Summary
The mvSessionControl class supports the following methods:

Name Description

ActiveSessions Returns an array of mvSession objects representing

the current entries within the database session

pool.

ForcedRemovalEventEnabled Use to turn on/off the raising of the

ForcedRemoval event. See below.

TerminateSession Allow a specific entry within the database session

pool to be terminated.

TerminateAllSessions Allow all entries within the database session pool

to be terminated.

TerminateAllSessions Allow all entries within the database session pool

to be terminated.

Event Summary
The mvSessionControl class supports the following events:

Name Description

ForcedRemoval Raised when a session is forcibly removed from the

session pool due to it being detected as

inoperative/unresponsive. The setting of the

ForcedRemovalEventEnabled property controls

whether this event is fired. The arguments of this

event provide information relating to the session

which has been removed.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 149

Class mvSession

This class represents an entry within the current database session pool.

Property Summary
The mvSession class supports the following properties:

Name Description

AccountName The name of the account profile associated with the

session.

LastAccessed A Timestamp indicating when the session was last

accessed.

Port The database process port number associated with the

session.

ServerName The name of the server profile associated with the session.

SessionID The unique internal identification number of the session.

Status The current status of the session (Free/Allocated/Shared)

DataBASIC Methods

The BlueFinity.mvNET.CoreObjects.DataBASIC namespace contains a range of methods

designed to provide some of the familiar functionality available within MultiValued DataBASIC.

The aim here is not to duplicate every aspect of functionality contained within DataBASIC, but

rather to provide those features that are unique to DataBASIC - i.e. those aspects which are

not readily available via alternative native methods within .NET.

Method Summary
The following methods are provided:

Name Description

Char Returns a character (string) representing the ASCII character

at a specified rank position.

Convert Returns a string where all occurrences of a set of characters

have been replaced with an equivalent character from a

replacement set.

ConvertString Returns a string where all occurrences of a set of characters

Core Objects Developer's Introductory Guide - Class Library Overview

Page 150

have been replaced with an equivalent character from a

replacement set.

Count Returns the number of times a delimiter string occurs in a

source string.

Date Returns the current date as a MultiValued internal date

formatted value.

DCount Returns the number elements of a string that are separated

by a delimiter string.

Delete Deletes an attribute, value or subvalue from within a string

in 'item' format.

Extract Returns an attribute, value or subvalue from within a string

in 'item' format.

Field Returns multi-character delimited substrings from within a

string.

IConv Applies a MultiValued input conversion code to the supplied

data.

Index Returns the position of a character or characters within a

string.

Insert Inserts an attribute, value or subvalue into a string in 'item'

format.

Locate Returns the index of an attribute, value or subvalue with a

string in 'item' format.

Num Returns a Boolean value indicating whether the supplied

argument represents a numeric value.

OConv Applies a MultiValued output conversion code to the

supplied data.

Replace Replaces an attribute, value or subvalue within a string in

'item' format with another value.

Seq Returns the ASCII rank position of a specific character.

Rnd Returns a random integer number between zero and the

specified argument -1. i.e. the argument indicates the

number of possible values for the random number starting

from zero.

Space Returns a string value containing a specified number of

space characters.

Str Returns a string value containing a specified number of

occurrences of a specified string.

Core Objects Developer's Introductory Guide - Class Library Overview

Page 151

Time Returns the current time as a MultiValued internal time

formatted string.

Trim Returns a string with certain space character occurrences

removed.

Supported IConv Codes
The following conversion codes are supported by the above IConv function:

D - converts supplied data into an internal date value

MT or T - converts supplied data into internal time value

MR or MD - scales supplied data into internal integer storage format

X - converts supplied data into hexadecimal form

B - converts supplied data into internal Boolean value

Because MV databases do not support a native Boolean value, the 'B' conversion code must be

instructed on what string value represents a Boolean true and false value. The following

syntax variations are supported:

B - the TrueString static method of the .NET Boolean class is used to control the conversion

process.

Bt,f - where t represents the true string value and f the false string value. For example: BY,N

or B1,0

Supported OConv Codes
The following conversion codes are supported by the above OConv. The time formatting

codes use an example time of 17 minutes and 48 seconds past 11-o-clock in the evening.

DS - converts the supplied internal date value into a short format date string

DL - converts the supplied internal date value into a long format date string

D2 - converts the supplied internal date value into a date string with only a 2-digit year

representation

MTSHORT - converts the supplied data into a short format time string

MTLONG or T - converts the supplied data into a long format time string

MT - converts the supplied internal time value into a string of format 23:17

MTH - converts the supplied internal time value into a string of format 11:17PM

MTS - converts the supplied internal time value into a string of format 23:17:48

MTSH or MTHS - converts the supplied internal time value into a string of format 11:17:48PM

MTSHP or MTHSP - converts the supplied internal time value into a string of format

PM11:17:48

Core Objects Developer's Introductory Guide - Class Library Overview

Page 152

MR or MD - converts the supplied data into a real number representation

X - converts the supplied hexadecimal data into decimal form

B - converts the supplied Boolean data into the either Boolean.TrueString or Boolean

FalseString constants. See IConv section above for more details on the syntax variations of

this conversion code.

Core Objects Developer's Introductory Guide - Gateways

Page 153

Gateways

This chapter describes mv.NET's flexible remote connectivity feature – the Gateway.

Gateway Overview

There may be occasions where clients require database access from locations where there is no

opportunity to establish a direct LAN or VPN connection to the internal database network. In

such situations, mv.NET offers a feature whereby such clients can connect via a web service.

This web service is known as a 'gateway' or 'gateway service' and is located on a 'gateway

server'.

To connect to the database via a gateway service, the client simply needs to specify the URL of

the gateway service along with the name of a login profile which is defined in the configuration

database being used by the gateway server.

Specifying Access via a Gateway

There are several aspects which need to be configured to allow gateway access. Firstly, the

client application needs to use a special overload of the mvEnvironment class in order to specify

the URL of the gateway service. Please refer to the Accessing Gateways from the Client section

below for further details on this.

Secondly, the gateway service needs to be installed on the gateway server. Please refer to the

Installing the Gateway Service section below for further details on this.

Core Objects Developer's Introductory Guide - Gateways

Page 154

Thirdly, the configuration database on the gateway server needs to be defined so that login

profile names(s) specified by gateway clients can be recognized by the instance of mv.NET

running on the gateway server.

Accessing Gateways from the Client

To access a gateway, the client application must use a specific overload of the mvEnvironment

class constructor – this overload allows the URL of the gateway service to be specified. In

addition to this URL, a Boolean flag indicating whether the client's database connection is to be

persistently reserved for its exclusive use must also be supplied.

Once the mvEnvironment class has been instantiated in this manner, its Login method can be

used as normal to obtain a database connection (mvAccount class instance). For example:

Dim myEnv As New mvEnvironment(True,

 "http://mydomain/mvNETGateway/mvNETGateway.asmx")

Dim myAcc As mvAccount = myEnv.Login("SOP")

Or, in C#

mvEnvironment myEnv = new mvEnvironment(true,

 @"http://mydomain/mvNETGateway/mvNETGateway.asmx");

mvAccount myAcc = myEnv.Login("SOP");

The myAcc variable can then be used in the normal manner in order to access the contents of

the account.

Installing the Gateway Service

The CID product comes with a setup routine called 'GWSetup.exe' – this routine needs to be run

on each system that is to act as a gateway server. GWSetup.exe installs a similar set of files as

per the standard (SRDK setup) server setup routine and should be used instead of this. The

main difference between SRDK setup and GWSetup.exe is that the following additional folder is

created:

C:\Program Files\BlueFinity\mv.NET\Versionx.x\mvNETGateway

This folder contains the files and folders which need to be copied into the virtual directory

(created by you) to host the Gateway Service.

Core Objects Developer's Introductory Guide - Gateways

Page 155

As mentioned above, an IIS virtual directory needs to be created manually to host the gateway

service. This virtual directory can be given any name, but we recommend "mvNETGateway" as a

standard. Once the virtual directory has been created, the contents of the mvNETGateway

installation folder need copying into the virtual directory folder.

Gateway Hopping

Because the system hosting the gateway service will be accessible by anybody with an internet

connection, this system will be typically located within the DMZ area of the network. In order to

limit the number and scope of the 'holes' which needs to be opened up through the corporate

firewall, it is possible to run 2 gateway services – one within the DMZ (the 'external' gateway)

and one on the internal LAN (the 'internal' gateway). This structure means that only port 80

access from the external gateway to the internal gateway system needs to be allowed. Access

to the database will be via a transparent 'hop' from the external gateway to the internal LAN

gateway.

GWSetup.exe needs to be run on both gateway servers. On the external gateway server, the

Data Manager should be used to create a Gateway Profile which points to the internal gateway

service. Also, on the external gateway server, all login profiles that are going to be referenced

by remote clients should be set to use the appropriate gateway profile.

On the internal gateway server, login profiles should be set up to use server/account profile

pairings as normal.

Core Objects Developer's Introductory Guide - Gateways

Page 156

Deploying Your

Application

This chapter describes the mv.NET components which you will need to install as part of your

own application deployment procedure.

mv.NET's Runtime Deployment Kits

There are 2 versions of runtime deployment kits:

Client Runtime Deployment Kit (CRDK)

Server Runtime Deployment Kit (SRDK)

The SRDK setup file installs all the components installed by the CRDK setup and in addition

installs support for the session pooling components, the License Manager and a runtime

version of the Data Manager

Using Runtime Deployment Kits

The deployment kits are provided as standalone setup routines that may be executed as part of

your own installation procedure. You may run them as a silent background task by supplying a

/s option at the end of the invoking command line, e.g.

SRDKSetup2.0.exe /s

Core Objects Developer's Introductory Guide - Gateways

Page 157

Client Runtime Deployment Kit

This runtime deployment kit installs all of the components necessary to support the client-side

libraries of Core Object, Binding Objects and Adapter Objects. It does not install the support

libraries for session pooling nor does it install the runtime version of the Data Manager as it

assumes that these roles are being supported by a separate system. It intended for use on

end-user workstations which are to run interface-only application software, a classic example

of this being the deployment of the interface tier of a rich client application.

For rich-client applications, you would typically use the ConfigurationPath feature to allow

client systems to access a centrally located configuration database.

Note, also, that the mvEnvironment class has a constructor that allows the ConfigurationPath to

be specified programatically.

Server Runtime Deployment Kit

The Server Runtime Deployment Kit should be used on any system which is to support session

pooling and or License Management. It installs all the components installed by the CRDK, plus

the session pooling components, the License Manager and a runtime version of the Data

Manager application. The runtime version of the Data Manager is primarily provided to allow

the required server and account profiles to be created and maintained. It will allow a

connection to an account to be established but will not allow any activity to be performed within

the account, such as viewing the available files and browsing data.

The SRDK is typically installed onto Web servers that are to run mv.NET linked applications or

onto servers that are going to run mv.NET session management.

Note, the SRDK does not install any configuration database settings, this must be done by your

own installation script according to what configuration settings are required for your

application.

Extended Dictionary Deployment

As an integral part of an mv.NET-based application, it is important to make sure that any

extended dictionary items that you have created using the Data Manager or other utilities are

installed into deployed installations of your application.

Core Objects Developer's Introductory Guide - Gateways

Page 158

All of mv.NET's extended dictionary items are held in the dictionary of the relevant file with item

IDs starting with an open curly bracket character ("{") and ending with a closing curly bracket

character ("}"). You should make sure that all these items exist in your deployed account(s).

Core Objects Developer's Introductory Guide - Session Usage Statistics

Page 159

Session Usage Statistics

This chapter describes the session utilization statistics that mv.NET is able to gather and

display.

Why Gather Session Statistics?

It may often be difficult to know exactly how large to set your session pools.

Sometimes, the only option is to make an educated guess and see what the end user

experience is like based on a given setting.

To assist you with this process, mv.NET can gather session utilization statistics for one

or more accounts. It also provides a tool which allows you to view these statistics over a

period of time.

Activating Statistics Gathering?

On the "Other" tab of the account profile definition is a checkbox which, when ticked,

indicates to the Session Manager that when a connection using this account profile is

established, it is to start gathering session utilization statistics. This account profile

setting is dynamically detected by the Session Manager and so the mv.NET services do

not need to be restarted in order for this setting to become active.

Session statistics are gathered and stored on a one-minute interval basis.

Core Objects Developer's Introductory Guide - Session Usage Statistics

Page 160

Where are Statistics Stored?

All statistical data is gathered into the following folder:

C:\ProgramData\BlueFinity\mv.NET\Version4.0\Statistics

The Statistics for the current Session Manager invocation are held in the "Live" folder

under this path. The statistics for previous invocations are held in the Archive folder,

which each subfolder within this being given a name indicating the start time of the

corresponding invocation of the Session Manager.

When you have finished with statistics you may delete subfolders within the Archive

folder as required.

Viewing Session Statistics?

The CID setup and SRDK setup installation routines install the following executable:

mvNET.StatisticsAnalysis.exe

within the bin folder of mv.NET and create a shortcut to the program on the mv.NET

Windows Start menu.

A screenshot of the Statistical Analysis tool is show below:

Core Objects Developer's Introductory Guide - Session Usage Statistics

Page 161

Diagram 10a : The Statistical Analysis Tool's Window

The first combobox at the top of the screen allows you to select the invocation of the

Session Manager that is of interest. The dates listed in this combobox relate to the

startup date/time of the corresponding Session Manager invocation.

Once you have selected an invocation date/time you are able to select the name of the

server/account pairing in which you are interested.

Statistics Category: Session Utilization

The statistics shown in this section of the screen indicate the proportion of time that

sessions are in an allocated state as opposed to a free state.

Core Objects Developer's Introductory Guide - Session Usage Statistics

Page 162

If you are trying to minimize the number of sessions used then if this display indicates

an average utilization of around 50% or below, there may be scope for you to reduce the

maximum session pool size.

Statistics Category: Pooled Sessions

This statistics grouping allows you to view the number of sessions connected using this

server/account profile pairing over time. This is another means to assess whether the

maximum size of your session pool is configured in the most appropriate manner.

Statistics Category: Polls taken to Acquire Session

If there are no sessions available at the time a client process requests a database

connection from the Session Manager, the client will be asked to wait for several

milliseconds (as indicated by the queuing settings within the corresponding account

profile) and to then try again. The statistics shown in this grouping allow you to view

how many times, on average, clients are being asked to wait each time they request a

connection. Obviously, the greater the number here, the greater the delay clients will

experience when obtaining sessions. A certain amount of delay is acceptable, but if this

number starts to rise above 7 or 8, it may be time to start considering increasing the

pool size maximum.

Statistics Category: Session Acquire Requests Per

Minute

This statistical grouping allows you to view the number of session requests being

generated per minute. This is useful when examining the time profile of session usage

by clients.

Core Objects Developer's Introductory Guide - Troubleshooting

Page 163

Troubleshooting

This chapter describes various troubleshooting topics.

Debugging Server-side Code

There are several features available to assist in the task of debugging server-side code.

The Connection Monitor

A window (Connection Monitor) allowing you to view the bi-directional flow of data

across a database connection can be viewed by double-click any entry within the

Session Monitor's Active Sessions listing. If a server-side routine generates error

messages or falls into debug you will be able to see the output in this window. The

window will also allow keyboard entry of characters, thus allowing you to debug the

server routine in real time

The MVNET.RECORD file

If you need to record the data being passed in and out of the database server over a

period of time, you can have mv.NET record this data in a file. You need to create a file

called MVNET.RECORD within the data account and create an item called "ACTIVE". The

ACTIVE item needs to hold a single integer value:

0 = Recording not active

1 = Record incoming data

2 = Record incoming and outgoing data

The data within the MVNET.RECORD file is held as a series of items with IDs

incorporating the port number of connections. Within each item, incoming messages

Core Objects Developer's Introductory Guide - Troubleshooting

Page 164

are proceeded with a line containing "IN =====" ; outgoing messages are proceeded

with a line containing "OUT =====".

Note, it is important that recording is deactivated when you have finished your

debugging activities as it places a significant overhead on the operation of mv.NET.

The MVNET.TRACE file

By creating a file called MVNET.TRACE within your data account, you will be able to

record the last 2 incoming and outgoing messages that occurred on a connection. This

feature is designed to provide as feature which can be activated over a period of time

when you are trying to identify the last operation to be performed on a connection

before the connection was terminated.

The presence of the MVNET.TRACE file is all that is required to activate tracing. Items

within this file incorporate the port number of connections, within outgoing messages

contained in items containing ".OUT" in their ID and incoming outgoing messages

contained in items containing ". IN " in their ID.

Core Objects Developer's Introductory Guide - The Sample Application

Page 165

The Sample Applications

This chapter describes the sample applications that are installed as part of the CID setup

routine.

Application Location

The sample applications are installed into:

C:\Documents and Settings\All Users\Application Data\BlueFinity\mv.NET\Version4.0\Examples

Or, for Vista, Windows7 and Server2008 systems:

C:\ProgramData\BlueFinity\mv.NET\Version4.0\Examples

Core Objects Application

This application illustrates the use of many of the Core Objects classes, namely:

• Accessing the Configuration Database programmatically

• Establishing a database connection

• Opening a data file

• Reading, writing and deleting data items

• Accessing item data

• Selecting items

• Utilizing BTree indexes

• Calling DataBASIC subroutines

Core Objects Developer's Introductory Guide - The Sample Application

Page 166

Binding Objects Application

This sample application illustrates the use of many of the features within the Binding

Objects module.

NOTE, to use this application, you will need to have downloaded the SOP demo account.

See section Server Console Window for details on how to do this.

Please refer to the Binding Objects Developer's Introductory Guide for more details of

this sample application and Binding Objects in general.

Adapter Objects Application

This sample application illustrates the use of many of the features within the Adapter

Objects module. Use of both the visual and non-visual aspects of the ADO.NET data

provider are illustrated.

Please refer to the Adapter Objects Developer's Introductory Guide for more details of

this sample application and Adapter Objects in general.

