
mv.NET Solution Objects

Developer Guide

A product from BlueFinity

Copyright Notices

Copyright BlueFinity International 2009 onwards

Document ref: mvNET_SO_DG

Revision 4.5.0

All rights reserved BlueFinity International 2009 onwards

Contacting Us

We are always very happy to be able to discuss all aspects of our products with our

customers - prospective and current alike. You can contact us via the following means:

Website: www.bluefinity.com

Email: support@bluefinity.com

Address: 10260 SW Greenburg Road, Suite 700, Portland, OR 97223, USA

Address: Hamilton House, 111 Marlowes, Hemel Hempstead, Herts, HP1 1BB, UK

Trademark Acknowledgements

The mv.NET product and logo are trademarks of BlueFinity International Limited.

All other trademarks and trade names are the property of their respective owners and are

used in this documentation for identification purposes only

Contents

mv.NET Solution Objects 1

Copyright Notices ... 2

Contacting Us.. 2

Trademark Acknowledgements ... 2

Welcome to mv.NET 1

The mv.NET Family of Products ... 1

Feature Overview ... 2

The mv.NET Suite .. 2

Developer Guide Contents ... 2

Solution Objects Overview and Getting Started 3

Solution Objects - Basic Concepts ... 4

Entities .. 4

Entity Models .. 5

Data and Business Access Layers .. 5

Solution Objects - Process Summary ... 6

Initial Installation .. 7

Entity Models Repository Download .. 7

Creating a New Entity Model ... 8

Generating Initial Entity Definitions ... 8

Extending Entity Definitions .. 9

Generating DAL and BAL Code .. 9

Using Generated Code ... 9

Referencing and Using Your Business Access Layer 10

Sample Projects ... 10

Maintaining Entity Model Definitions 11

Overview ... 11

The Entity Models Node .. 11

Creating an Entity Model Definition ... 12

Modifying an Existing Entity Model Definition ... 14

Maintaining Entity Model Versions 15

Overview ... 15

Creating a New Entity Model Version ... 15

Creating Entity Definitions 16

Overview ... 16

Creating Entity Definitions Manually .. 16

Notes on Manual Entity Creation ... 17

Generating Entity Definitions ... 18

Extended Dictionary Fields ... 18

File Properties ... 19

Running the Entity Generator .. 19

Maintaining Data Access Class Definitions 24

Overview ... 24

DAC Summary Display ... 24

DAC Datasource Specific Display ... 25

Property Maintenance .. 27

Property View - Summary ... 27

Property View - Single-valued Fields .. 27

Property View - Multi-valued Fields .. 35

Property View - Sub-valued Fields .. 35

Property View - Nested Groups .. 36

Property View - Calculations ... 37

Dynamic Array Representation of Data ... 38

Maintaining Datasource Schema ... 39

Selection Method Maintenance .. 41

Selections View - Summary .. 41

Selections View - Self (Static) .. 42

Selections View - Singular Instance .. 46

Subroutine Method Maintenance ... 47

Datasource Update Control Maintenance ... 49

Custom Datasource Update Control .. 51

Optimistic Locking Control ... 55

Security Maintenance .. 57

Schema Mismatch Warnings .. 58

Maintaining Business Access Class Definitions 60

Overview ... 60

Creating a New BAC .. 61

Maintaining the Definition of an Existing BAC ... 62

Defining the Properties of a BAC ... 63

Defining the Methods of a BAC.. 65

Maintaining Business Access Layer Definitions 66

Overview ... 66

Creating a New BAL ... 67

Maintaining the Definition of an Existing BAL .. 68

Validating Entity Definitions 70

Overview ... 70

Validating a Single DAC ... 70

Validating the Whole Entity Model ... 71

Generating Code Modules 72

Overview ... 72

Invoking the Code Generator... 72

Using Generated Code 75

Overview ... 75

Steps to Produce an Access Layer Assembly .. 75

Utilizing a Business Access Layer 77

Overview ... 77

Steps for Utilizing a Business Access Layer Assembly.................................... 77

BAC Standard Properties and Methods .. 78

Class Static Data ... 79

Integrating Custom Code 81

Overview ... 81

The Custom Code File ... 81

Intercepting Property Get/Set in the DAL .. 82

Intercepting CRUD actions in the DAL ... 84

BeforeCRUD Code Stub ... 84

AfterCRUD Code Stub ... 85

Overriding Error Messages .. 86

Reading/Selecting Data 89

Overview ... 89

Initializing Data Access ... 89

Reading Individual Entity Instances ... 91

Selecting Multiple Entity Instances .. 93

Pre-emptive Data Selection ... 94

Saving Data Changes 96

Overview ... 96

Singular Instance Update Method .. 96

Collective Instance Update Method.. 97

Deleting Data 98

Overview ... 98

Static Delete Method ... 98

Instance Delete Method ... 99

Creating New Instances 100

Overview ... 100

Static Create Method ... 100

Singular Class Constructor .. 101

WinForm Data Binding Support 102

Overview ... 102

WebForm Data Binding Support 103

Overview ... 103

WebForm Data Binding Principles .. 103

ObjectDataSource Property Settings .. 104

The WebDataAssist Control ... 105

Web Data Binding Selection Methods... 106

Web Data Binding Maintenance Methods ... 107

Accessing Datasource Data at Run-time ... 107

Developing Silverlight Applications 111

Overview ... 111

User-based Property Security 112

Overview ... 112

Defining Security Groups ... 113

Associating Security Groups with Properties .. 113

Using Security Information at Run-time .. 114

mv.NET Solution Objects Developer Guide - Welcome to mv.NET

Page 1

Welcome to mv.NET

Firstly, thank you for either purchasing one or more of the mv.NET products, or for

taking the time to explore the great functionality that they can provide to you and

your fellow developers.

This chapter outlines the members of the mv.NET family of products and

summarizes the contents of this guide.

The mv.NET Family of Products

Solution Objects is one of the members of the mv.NET family of products authored

by BlueFinity. mv.NET is the essential tool for any MultiValue database developer

wishing to create .NET based application interfaces to their current or new

MultiValue database file system.

The design goal of mv.NET is to enable the MultiValue developer to combine the

power and flexibility of proven MultiValue technology with the state-of-the art,

feature rich .NET environment. Its design also enables and encourages the

developer to leverage, wherever possible, previously acquired MultiValue skills.

BlueFinity's team of software engineers has huge knowledge and experience of

using both MultiValue systems and the .NET environment. We proudly regard

ourselves as being one of the foremost companies in providing this technology

bridge and look forward to working with you to enable you to meet your software

development goals.

mv.NET Solution Objects Developer Guide - Welcome to mv.NET

Page 2

Feature Overview

The Solution Objects product provides the ability to create a strongly-typed class-

based access layer to your MultiValue database.

The product's key features are as follows:

• Entity modeling tool to allow database-to-entity mapping definitions

to be created

• Schema import wizard to allow quick creation of entity models

• Code generation utility to automatically create .NET code

modules in either C# or VB.NET

• Run-time support assemblies for generated code

• Full support for nested data down to sub-value level

The mv.NET Suite

Solution Objects is one of three products within the mv.NET suite; the suite

comprising of:

• Core Objects - object oriented native .NET access to

MultiValue databases.

• Solution Objects - Strongly-typed class-based access to

your MultiValue database.

• Adapter Objects - complete implementation of an ADO.NET

managed data provider for MultiValue databases, offering a

standardized interface to database access.

Developer Guide Contents

The contents of this guide are designed to provide a basis for learning about the

Solution Objects module. Further help is provided within the Visual Studio

environment using the product’s dynamic and IntelliSense help systems.

mv.NET Solution Objects Developer Guide - Overview

Page 3

Solution Objects

Overview and Getting

Started

Accessing your database information is one of the most important aspects of

creating line-of-business applications. For .NET developers wishing to access

MultiValue databases, mv.NET has provided strong connectivity capabilities for

several years with its Core Objects and Adapter Objects component sets.

Solution Objects adds to this connectivity capability by introducing the ability to

easily create a strongly-typed, class-based access layer to your MultiValue

database. This access layer brings several significant benefits for the application

developer:

- Simplified, intuitive access to the underlying database, without the need for

specific MultiValue database knowledge

- Compile-time data-type checking of application code

- Support for native .NET databinding for both Web and WinForm applications

mv.NET Solution Objects Developer Guide - Overview

Page 4

Solution Objects - Basic Concepts

Before diving into too much detail, it would perhaps be useful to set the scene in

terms of the basic concepts that Solution Objects brings to the table. The sections

below cover the main ideas that you'll need to grasp before starting to use

Solution Objects.

Entities

First of all, we have the concept of "Entities". An entity is a 'thing' that your

application deals with and, as such, can be a representation of pretty much

anything - something physical or something abstract - it all depends on the

"domain" that your application deals with.

If your application is a stock control system chances are that your entities will be

things like Products, Suppliers, Purchase Orders etc. If you are creating a banking

application your entities will be things like Bank Accounts, Customers, etc.

The modern object-oriented programming paradigm fits well with the concept of

entities because, very often, many of the "Objects" inside your application are a

representation of the entities within your "application domain".

If you have an existing application, your database structure will probably be the

first representation that you can turn to to identify the entities that exist within

your application domain. Sometimes there will be a strikingly close match

between files and entities - sometimes not. It all depends, of course, on the

mindset of the person/people who designed the file structure originally.

Anyway, the first thing that you need to establish is a good understanding of what

entities it makes sense for your application to use and then combine this with a

good understanding of where the data that these entities use is held within your

database.

You also need to understand how entities relate to one another. This, again, may

well be represented to a certain extent by the dictionary definitions within your

database.

mv.NET Solution Objects Developer Guide - Overview

Page 5

Entity Models

An Entity Model is a formal definition of all the entities that exist within your

application domain. It also contains information describing how entities relate to

each other. Solution Objects also uses the Entity Model to contain the following

additional pieces of important definition information, including:

- how entities map onto the underlying data store (MultiValue database)

- how entities can be selected

- how back-end database resident routines are to be accessed

You can create any number of different entity models as required.

Data and Business Access Layers

.NET developers live and breathe classes; after all, the .NET framework is the

mother of all class collections! Thus, it is natural for this community of

developers, when dealing with the matter of application data, to view their

application data as being made up of a series of classes.

Therefore, the basic idea behind Solution Objects is to assist you in the task of

producing a series of class definitions that represent your application's main data

environment. These classes being able to read and write data from/to a

MultiValue database as required by the logic of your application.

A Data Access Layer (DAL) is a series of classes - each referred to as a Data Access

Class (DAC) - which provides the "first line" of class-based abstraction of your

database. Each DAC knows exactly where to go within the associated database to

retrieve the persisted data that it needs/represents.

A Business Access Layer (BAL) is also a series of classes - each referred to as a

Business Access Class (BAC) - with which your application code interacts. Some

people use the term Business Logic Layer (BLL) as the name of such a concept.

The BAL has no knowledge of where persisted data comes from - it lets the DAL

handle that. The classes within the BAL, of course, have a very strong association

with the classes in the DAL, but these classes may have different names and a

single DAC may be represented by multiple BACs.

The BAL is more concerned with providing a series of classes that are useful for

the application developer. These classes, for example, know how to interact with

data binding mechanisms; they can also present a subset of the classes (and

mv.NET Solution Objects Developer Guide - Overview

Page 6

properties within the DAL classes) in order to simplify the class interface or to

prevent the application developer from accessing sensitive, special or voluminous

data.

The end application developer does not interact directly with the DAL. The DAL is

there to service the needs of the BAL.

The following diagram illustrates these concepts:

Solution Objects - Process Summary

There are several distinct tasks that you will need to perform in order to produce a

functional class-based access layer using Solution Objects:

1. Install the mv.NET Client Interface Developer SDK. The mv.NET Data

Manager utility is installed as part of this SDK and is used to perform

tasks 2 through 6 below.

2. Download the Entity Models Repository files into a designated account on

your MultiValue database.

3. Create an empty Entity Model.

4. Use the entity generator to create your initial entity definitions based on

existing database dictionary/schema definitions.

5. Flesh out your entity definitions as required, including the definition of

one or more Business Access Layers.

.NET Databinding Interfaces

Data Access Layer

Business
Access
Class#1

Data Access Class

Business
Access
Class#2

Business
Access
Class#3

Organization

Organization OrganizationLookup OrganizationReport

Business Access Layer

mv.NET Solution Objects Developer Guide - Overview

Page 7

6. Use the code generator to generate your Data Access Layer (DAL) and

Business Access Layer (BAL) code modules.

7. Include these code modules inside a Visual Studio project and build your

access layer assembly. You can have the code modules in separate Visual

Studio projects if you prefer to produce separate DAL and BAL

assemblies.

8. Reference your BAL assembly from within your end application Visual

Studio solution.

The following sections cover each of the above steps in turn.

Initial Installation

Solution Objects is supplied as part of the mv.NET Client Interface Developer (CID)

SDK package. Therefore, the first step is to load this onto your development

workstation. If you already have a pre-4.1 version of the mv.NET CID installed on

your system you may upgrade it using the latest CID service pack. Please refer to

the Core Objects developer guide and the current release notes for more

information on upgrading an existing CID installation.

Entity Models Repository Download

The Data Manager stores all entity model definitions in a series of files within a

MultiValue database account. Collectively, these files are referred to as the "Entity

Models Repository" (EMR). The decision as to which account is to host the EMR is

ultimately your decision, but we recommend that you create an account

specifically for this purpose and call it "MV.EMR". Please do not use the MV.NET

account that has been created to host the mv.NET server-side components as the

EMR host account.

Once you have created the EMR account or identified an existing account that you

are going to use for this purpose, you need to make sure that this account has

been "enabled" for mv.NET usage. Please refer to the Core Objects Developer

Guide for further details on this topic.

Once the EMR account has been enabled, you need to create a server and account

profile within the Data Manager (if ones do not already exist) to connect into this

account. Note, if you have created a dedicated account for your EMR you can turn

mv.NET Solution Objects Developer Guide - Overview

Page 8

'File schema caching' on within the account profile ('Other' tab) in order to improve

performance of the entity definition aspects of the Data Manager.

Once you have your server and account profiles in place, you then need to create a

Login profile within the Data Manager to reference this server/account profile

pairing. Again, please refer to the Core Objects Developer Guide for an in-depth

explanation of this process.

Next, you need to use the Data Manager's Server Console window to create the

EMR files and schema details. You will have already used the Server Console

window to enable the EMR account - this time, once you are at command level

within the EMR account within the Server Console window, you need to select the

"Download Entity Models Repository" option from its top "Action" menu.

This option takes about 2 or 3 minutes to complete. When it is finished, 12 files

will have been created within your database account all with a name starting with

"SO_". The dictionary items for these files will also have been downloaded.

The final step in this phase is to tell the Data Manager which login profile it is to

use to access the EMR. This is defined by right-clicking the "Entity Models" node

at the bottom of the Data Manager's Treeview area and selecting the "Set Entity

Models Repository Location" option from the resulting popup context menu. The

resulting dialog window then allows you to select the relevant login profile name.

Once these steps have been performed, you will be ready to start creating entity

model definitions.

Creating a New Entity Model

The first thing that you need to do after establishing the EMR is to create the first

entity model. You can do this by right-clicking the "Entity Models" node within the

Data Manager's Treeview area and selecting the "Set Entity Models Repository

Location" option from the resulting popup context menu. Please refer to the

Maintaining Entity Model Definitions chapter for more details on this process.

Generating Initial Entity Definitions

After creating your first entity model entry, you will need to start creating entity

definitions. This can be done one at a time manually or it can be done using the

entity definition generator. The generator scans the schema of the database files

mv.NET Solution Objects Developer Guide - Overview

Page 9

that you specify and infers from this information the entities (and properties

within these entities) that should be created. Please refer to the Creating Entity

Definitions chapter for more details on this topic.

Extending Entity Definitions

Once the initial details of an entity have been created either manually or via the

entity generator, you will need to spend some time fine tuning and extending

these details. You will first need to make sure that the Data Access Class (DAC)

definition contains all of the required member details (properties, selection

methods and subroutine methods). Then you can start creating one or more

Business Access Class (BAC) definitions as required by the end-application

developers. Finally, you will need to create one or more Business Access Layers

(BAL) to gather together the required BACs into a single access layer. Please refer

to the Maintaining Data Access Class Definitions, Maintaining Business Access

Class Definitions and Maintaining Business Access Layer Definitions chapters for

more information on these topics.

Generating DAL and BAL Code

One you have created the definitions of your DACs, BACs and BALs you are ready

to generate some code. Please refer to the Generating Code Modules chapter for

details on how you can do this.

Using Generated Code

All of the previous actions are performed using mv.NET's Data Manager utility.

The next step involves firing up Visual Studio and creating a new Class Library

project to host your generated code. Please refer to the Using Generated Code

chapter for details on how to do this.

mv.NET Solution Objects Developer Guide - Overview

Page 10

Referencing and Using Your Business Access

Layer

Finally, to utilize the fruits of all your hard labors, within your end application

project you simply need to reference the BAL assembly that you have produced

using Visual Studio in the previous step. Please refer to the Utilizing a Business

Access Layer chapter for further details on this topic.

Sample Projects

Some sample projects illustrating the use of a generated BAL are installed as part

of the CID installation. These samples can be found in the following folder:

C:\Documents and Settings\All Users\Application

Data\BlueFinity\mv.NET\Version4.0\Examples\Solution Objects

Note, on Vista/Server 2008 systems C:\Documents and Settings\All

Users\Application Data is represented as C:\ProgramData

mv.NET Solution Objects Developer Guide - Maintaining Entity Model Definitions

Page 11

Maintaining Entity

Model Definitions

This chapter describes how you can create and maintain entity model definitions.

Overview

An entity model definition contains everything that Solution Objects requires to

generate the code to support a class-based representation of an application's data

domain.

As such, it contains a range of detailed information. This information and the

creation and maintenance of such information are described in the following

chapters of this guide. However, there are several pieces of information that

describe the very top-level characteristics of an entity model and it is this

information that you associate directly with the entity name itself.

The Entity Models Node

The second to last main Treeview node within the Data Manager contains all of the

entity modeling functionality. When expanded, this node will contain either a list

of entity model repository locations or the entity models within a single repository.

By default, only a single entity model repository at a time is displayed within the

Data Manager. This can be changed to allow multiple repositories to be accessible

at the same time by selecting the "Use Multiple Repository Locations" option from

mv.NET Solution Objects Developer Guide - Maintaining Entity Model Definitions

Page 12

the right-click menu of the "Entity Models" node. On selecting this option, the

node caption changes to "Entity Model Repositories" and the content of the right-

click menu changes to reflect the shift in functionality. To return to a single

repository at a time behavior select the "Use a Single Repository Location" menu

option.

When the multiple repository location option is active you may create many

"location entries" within the "Entity Model Repositories" node. Each location entry

is simply a logical name associated with a login profile name – the login profile

name being the one that connects into the relevant EMR.

Creating an Entity Model Definition

You can create a new entity model definition by right-clicking the "Entity Models"

node within the Data Manager's Treeview area and selecting the "Create New Entity

Model" option from the resulting popup context menu. If the multiple repository

locations option is active the "Create New Entity Model" option is available from

the right-click context menu of each repository location node. On selecting the

create option, the following dialog window is displayed:

mv.NET Solution Objects Developer Guide - Maintaining Entity Model Definitions

Page 13

The above window allows you to enter the initial pieces of information about this

entity model. The sections below describe each input field/area.

Model name: The name of the model which will be used as the entry within the

Data Manager's Treeview area and also within program code. It therefore only

allows certain characters to be used in the name.

Description: A description of the entity model's purpose or content.

Root namespace: The namespace to be used within all generated code. All

namespaces typically start with the relevant owning organization's name, followed

by an indication of the purpose of the namespace area. For example:

BlueFinity.SOP

If you are unsure, please refer to .NET programming documentation for an

explanation of the purpose and format of namespaces.

DAL namespace suffix: The characters to be appended to the end of the root

namespace to identify/group together the classes comprising the DAL.

First version details: The next section of the input window then allows you to

enter a name and description for the first version of the entity model which will be

created as an implicit part of the creation of this new entity model.

Datasources: The final section of the input window allows you to enter the details

of the place where application data is to be found. The current version of Solution

Objects only supports a single datasource, which must be a MultiValue database.

Therefore, this screen allows you to amend 2 pieces of datasource information:

Datasource name: The name/identifier of the datasource to be used in program

code.

Datasource connection string: The connection string to be used by the Data

Manager to connect into the datasource. The connection string must be of the

format:

Server={login profile}

Where {login profile} represents the name of a login profile defined within the

Data Manager.

Clicking the Accept button will store the initial definition details for the new entity

model and the first version within the EMR.

mv.NET Solution Objects Developer Guide - Maintaining Entity Model Definitions

Page 14

Modifying an Existing Entity Model Definition

Once you have created an entity model, you are able to view and amend its top-

level definition information by right-clicking the appropriate entity model node

within the Data Manager's Treeview area and selecting the "Maintain Model Details"

option from the resulting popup context menu.

mv.NET Solution Objects Developer Guide - Maintaining Entity Model Versions

Page 15

Maintaining Entity

Model Versions

This chapter describes how you can create and maintain different versions of your entity

model definitions.

Overview

It is very likely that once you have generated and used your first entity model in an

application that has gone into production, you will need to make sure that the

entity model definition information is not changed other than to fix issues that

occur whilst it is in production. Therefore, if you need to onward develop the

entity model for use in the next version of an application or applications, you will

need to create a new version of the entity model to contain the enhancements.

For this reason, Solution Objects has the concept of creating multiple versions of

an entity model.

Creating a New Entity Model Version

In order to create a new entity model version, right-click "Versions" node beneath

the appropriate entity model node within the Data Manager's Treeview area and

select the "Create New Version" option from the resulting popup context menu. .

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 16

Creating Entity

Definitions

This chapter describes how you are able to create the initial definition of one or

more entities.

Overview

The building blocks of an entity model are entity definitions. Thus, clearly, one of

the main things that the entity model area of the Data Manager needs to do is to

allow you to create (and then onward maintain) entity definitions.

Creating Entity Definitions Manually

The first way of creating a new entity definition is to select the "Create New Entity"

option from the right-click context menu of the "Entities" node. This node is

positioned directly beneath the relevant version node within the Data Manager's

Treeview area.

When this is done, the following dialog window will be displayed:

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 17

Firstly, this window allows you to enter the 2 versions of the entity's name. The

singular name is used to refer to a single instance of the entity. The Collective

name is used to refer to a collection of instances of the entity. This dialog is the

only place where you can define these 2 names.

The next area of this window allows you to select the base file of the entity. This

file will provide the schema information that will be used when you create the

datasource mapping aspect of the Data Access Class definition (see next chapter).

Clicking the Accept button will create the initial entity definition and a new node

will be created underneath the Entities node representing the presence of the new

entity.

The "Create New Datasource File" button allows you to create a new file to link the

new entity to.

Notes on Manual Entity Creation

There are a few notes worth mentioning on the topic of creating entities manually.

Firstly, if your entity's property interface is going to closely match its base file's

schema, it will normally be much quicker to use entity generating (see next

section) as opposed to using the manual approach.

Secondly, the list of files presented in the Data file ComboBox on the above form

will only display the names of files which are not already represented by an entity

definition.

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 18

Thirdly, if you are creating an entity for a file that contains nested data, you must

(in fact, you are forced) to create the entity that represents the single-valued fields

first. Once this top-level entity has been created you are then able to create

entities which represent the nested data elements of the file. These nested

elements will be listed within the Data file ComboBox using one of the following

formats:

{FileName} {MvGroupName} (MvGroup)

Or (for sub-valued nested data)

{FileName} {SvGroupName} (SvGroup)

Where {FileName} is the base file's name, {MvGroupName} is the name of the Mv

group as defined in the extended dictionary of the file and {SvGroupName} is the

name of the Sv group as defined in the extended dictionary of the file.

Generating Entity Definitions

An alternative way of creating entities is to get Solution Objects to do the initial

heavy work for you. It does this by scanning the schema information of one or

more files (you choose which ones it scans) and then suggests an entity structure

of one or more entities based on its findings.

A pre-requisite of driving entity generation from your file schema is that you

spend some time making sure that the Extended Dictionary information for each

file has been created. Extended Dictionary maintenance is covered in depth with

the CoreObjects Developer Guide, but as a quick heads-up on what you need to

focus on, below is a list of the Extended Dictionary sections that are of interest to

the entity generator and, for that matter, Solution Objects in general:

Extended Dictionary Fields
You can maintain the extended dictionary information of a file by right-clicking

the relevant file node within the Data Manager and choosing the 'Maintain File

Schema' option from the resulting context menu. You can also maintain schema

information from within the Data Access Class maintenance window.

Within the resulting window you need to make sure that the following fields (in the

'Extended' tab in the lower section of the window) are set as required:

• Data type,

• MV type

• MV group

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 19

• SV group

• .NET column name (this is used as the default property name)

• Input Criteria (tab) fields

• Dependencies (tab) fields

• File Link (tab) fields

File Properties
You can maintain the general properties of a file by right-clicking the relevant file

node within the Data Manager and choosing the 'Properties' option from the

resulting context menu.

Within the resulting window you need to make sure that the following fields (in the

'Extended' tab in the lower section of the window) are set as required:

• Auto item ID generation (group box fields)

• .NET Environment Name Mappings (group box fields)

Within the .NET Environment Name Mappings fields, the 'DataTable/Entity name'

field is used as the default singular name of an associated entity. The group name

grid entries are used for the default singular names of entities representing nested

data within the file structure.

For more information on all fields within the 2 above maintenance windows please

refer to the Core Objects Developer Guide which is shipped as part of the mv.NET

CID product.

Running the Entity Generator

Entity generation can be invoked by selecting the "Generate Entities from File

Schema" option from the right-click context menu of the "Entities" node. This

node is positioned directly beneath the relevant version node within the Data

Manager's treeview area.

When this is done, the following initial dialog window will be displayed:

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 20

This dialog allows you to set the defaults for the generation of various "special"

property types. These special property types are explained in detail within the

following Maintaining Data Access Class Definitions chapter, but to summarize:

Entity references - these are properties that hold a reference to an instance of a

related entity based on the presence of an item ID (foreign key) within the file.

Mv/Sv arrays representations - these are properties that hold a reference to an

instance of a specialized class (provided by Solution Objects) that represents a list

of multi/sub/multi-sub values, based on the presence of nested data within the

file.

Text representations - these are properties that hold a string value representing a

list of multi/sub/multi-sub values, based on the presence of nested data within

the file. The string value has the internal value delimiters replaced with alternative

characters (e.g. CRLF) as defined by the DAC definition.

String equivalent representations - these are properties holding a string value

representation of either a date or time field, as opposed to a value of .NET data

type DateTime.

Note, these special values are in addition to the automatically included "simple"

values representing normal base field data, numbers, strings, dates etc.

Once you have selected the required special property defaults, clicking the Accept

button will result in the display of a dialog window which allows you to select

those files which are to be scanned as part of the entity generating process. Select

the files you require from the list and click the Accept button. The following main

window will then be displayed:

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 21

This window allows you to review the results of the entity generator's scan and to

edit various pieces of the data that will be used in the final definition generating

phase.

The top section of the window lists the entities that will be generated along with

the base file/schema that will be associated with the entity. You can edit the

singular and collective names of the entities as necessary. If the scanning process

has suggested some entities that you do not wish to generate, you can use the

Exclude button to remove them from the list.

The lower half of the window lists the property definitions that are to be generated

for the currently highlighted entity. You may control the generation of each

property by checking/unchecking the Generate column as necessary. You may

also edit the values in the Property Name, Related Entity and Base Field Description

columns as necessary. You are able to highlight multiple rows within the property

grid and alter each highlighted row's "Generate" column tick box setting en-masse

by using the right-click context menu of the grid.

The "Include/exclude special property types" tab simply allows you to adjust the

settings entered within the initial special properties dialog window on a per-entity

basis. If you adjust any settings within this tab, the Generate column checkbox

values for that entity will be adjusted accordingly.

It is important that you review the information presented in this window carefully.

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 22

When you are OK with the settings, clicking the Accept button will force the

generator to validate the generation details. The validation process will check that

all entity names and property names within an entity are unique. If any problems

are found, a list of errors will be displayed. This list of errors may be

shown/hidden by use of the " View/Hide Generation Errors" button in the bottom

left of the window.

If no validation errors are detected, the following dialog will be displayed:

This dialog allows you to specify various settings that will be applied to all

generated entities. Note, these settings may be adjusted later on a per-entity

basis.

These entity settings are explained in detail within the following Maintaining Data

Access Class Definitions chapter, but to summarize:

Include SelectAll - this indicates whether each DAC is to have a selection method

named "SelectAll". This method allows the entire content of the base file to be

selected.

Include SelectGeneric - this indicates whether each DAC is to have a selection

method named "SelectGeneric". This method allows the content of the base file to

be selected/sorted based on datasource specific select/sort command syntax.

Generate full-access BAC - this indicates whether a BAC with the same name as

the entity is to be generated in addition to the DAC. This BAC will contain all

properties and methods of the base DAC.

Property security style - this indicates what style of property-level security will be

applied to each entity.

mv.NET Solution Objects Developer Guide - Creating Entity Definitions

Page 23

Clicking the Accept button will create the initial entity definitions and new nodes

will be created underneath the Entities node representing the presence of the new

entities.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 24

Maintaining Data Access

Class Definitions

This chapter describes how you are able to maintain the definition of the Data

Access Class associated with an Entity .

Overview

At the heart of each entity definition is a description of the data that the entity is

to access and utilize from the underlying datasource. This information is

contained with a Data Access Class (DAC) definition. Each entity, thus, has one

(and only one) associated DAC definition.

Each entity node within the Data Manager's Treeview has a sub-node named "Data

Access Class". Double-clicking this node takes you into the DAC maintenance

window.

 DAC Summary Display

When the DAC maintenance screen is first displayed, you are shown a summary of

all members on the class. In the current version on the product, since only a

single datasource can be accessed by an entity, this display will show the

members linked to the underlying MultiValue datasource:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 25

DAC Datasource Specific Display

On clicking the Datasource specific radio button, the DAC maintenance screen

changes its display content to show the definition details specific to the selected

datasource.

This new display content is shown below:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 26

The datasource specific display shows the base file and schema for the DAC. It

also shows a checkbox named "Load all physical data". This check box allows you

to indicate that even if a BAC tells the DAC that it is only interested in a subset of

physical data, the entire physical data set will still be retrieved and passed back to

the client. You should only uncheck this option if the underlying datasource

record structure contains a lot of data. By only loading the physical data specified

by the BAC, you will cut down on data volume size moving from datasource to

client. You may also wish to uncheck this option if some of the data within the

datasource record is highly sensitive in nature, in which case this option will allow

you to prevent that data from ever being transmitted to the client.

The lower section of the datasource specific view is dedicated to allowing you to

view and maintain the 5 aspects of the class definition, as described in the

following sections.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 27

Property Maintenance

The Properties tab provides 6 different views of the properties defined within the

DAC.

The first view is a read-only summary display.

The middle 3 views provide the ability to define which property or properties are

to be generated for each base datasource field. The base fields are broken down

into nested data types, single (non-nested), multivalue nested and subvalue

nested. An important concept to grasp at this point is the fact that when you have

nested data, an entity, no matter which level of data nesting it represents, can

contain properties that expose any data field within the record, single or nested.

Therefore, you are always able to see the full list of Single-valued, Multi-valued

and Sub-valued fields for the record.

The other views allow you to define information relating to specialized properties

based on the presence of nested data as well as properties based around the need

to amalgamate a property's value across a collection of instances.

The different property views are selected by clicking the relevant radio button at

the top of the Properties tab area.

The 6 property views are described in the following sections.

Property View - Summary

This view allows you to see the overall picture of which properties are currently

defined for the class. If you double-click one of the rows within the displayed

grid, you will be taken into one of the other views to see the details of that

property definition.

Property View - Single-valued Fields

This view allows you to maintain the definition of which properties are to be

included on the interface of the DAC based on the presence of single-valued fields

within the base file.

Each single-valued base field within the base file can be represented by one or

more properties.

The content of the Single-valued property view is shown below:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 28

The grid on the left-hand side of the display allows you to select one of the

single-valued base fields. Fields that represent calculated or dynamically derived

non-physical data are suffixed with "(c)". Base fields that are currently

represented by one or more properties are flagged with an asterisk in the second

grid column.

The "Properties to generate" grid on the right-hand side of the display lists all of

the available properties for the currently selected base field. The "Generate"

column checkbox is used to indicate which of these available properties are to be

included within the interface of the generated class code. The "Property Type"

column displays the category of each potential property. The "Property Name"

column allows you to enter the name of the property as it will appear within the

generated code.

There are several possibilities for the Property Type column. The grid below

describes each possible setting:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 29

Property Type Description

Native .NET value A simple .NET data type. This will be one of the

following standard .NET CLR data types:

• String

• Int32

• Int64

• Double

• Decimal

• DateTime

• Boolean

String equivalent value A string representation of either a date or time

value.

MvArray of .NET values An MvArray of .NET values. Please refer the

Dynamic Array Representation of Data section

below for more details on this topic.

MvArray of string

equivalent values

An MvArray of string equivalent values, as

described above. Please refer the Dynamic Array

Representation of Data section below for more

details on this topic.

Single related entity A reference to a related singular entity instance.

Collection of related

entities

A reference to a collection of related entity

instances.

SmvArray of .NET values An SmvArray of .NET values. Please refer the

Dynamic Array Representation of Data section

below for more details on this topic.

SmvArray of string

equivalent values

An SmvArray of string equivalent values, as

described above. Please refer the Dynamic Array

Representation of Data section below for more

details on this topic.

The area underneath the "Properties to generate" will change dynamically

depending on the type of property currently selected. If a property has never been

defined, the area will be empty; in which case clicking the Generate column

checkbox will force the property definition input fields to appear.

Most property types will display a "Property options" group box beneath the

properties grid. Again, the content of this area will change dynamically depending

on the precise details of the currently selected property and its associated base

field. Below is a grid indicating the range of possible input controls that may

appear within the Property options groupbox area:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 30

Input Field Description

String Indicates that the property value will be a String .NET data

type. This input is automatically selected for base fields

representing an alphanumeric value.

Int32/Int64 Indicates whether the property value will be either an Int32 or

Int64 .NET data type. These inputs are displayed for base

fields representing an integer numeric value.

Double/Decimal Indicates whether the property value will be either a Double or

Decimal .NET data type. These inputs are displayed for base

fields representing a non-integer numeric value.

DateTime Indicates that the property value will be a DateTime .NET data

type. This input is automatically selected for base fields

representing either a date or time value.

Boolean Indicates that the property value will be a Boolean .NET data

type. This input is automatically selected for base fields

representing a Boolean value.

Update stamp Allows you to indicate that the base field associated with this

property holds a date-time modified update stamp. This

input is only displayed for base fields representing an

alphanumeric value. Only one property within the DAC as a

whole may be selected as an update stamp. Update stamps

are discussed in further detail in the Datasource Update

Control Maintenance section below.

Exists check Allows you to indicate that any value assigned to this property

will be automatically validated to ensure that it is a valid

existing primary key of an associated entity type. This option

is only displayed for base fields flagged within the base file

schema as holding a foreign key value.

Long format This field is only displayed for "string equivalent value"

property types and allows you to indicate whether the

Windows "Long" date/time format should be used to format

the returned date or time value. If this option is unchecked,

the Windows "Short" format will be used.

Expose as

Object data

type

This checkbox is available for all Native .NET value property

types (except Boolean). It allows you to expose the property

as an Object data type as opposed to its .NET value type.

Exposing a property has pros and cons.

The advantage is that an Object data type gives you more

flexibility in the way in which blank or bad datasource data is

handled. This is because Solution Objects will adjust the

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 31

actual type of data 'boxed' by the object to fit the retrieved

data, including returning null values.

The disadvantage is that you cannot guarantee the type of

data returned by such a property.

Present empty

string as null

This is available for any property which is exposed as an

object data type as well as String data types. It results in an

empty value (String.Empty) being presented as a null/Nothing

value.

Related entity Allows you select the type of entity that the reference held by

a property represents. This field is only displayed for

reference type properties.

Cascade deletes Indicates that if an instance of the current entity is deleted,

any instances of the entity type indicated by the "Related

entity" input field that are held by a reference property will

also be deleted. This field is only displayed for reference type

properties.

Synchronize

foreign keys

Indicates that if the entity type indicated by the "Related

entity" contains a property holding the primary key of the

current entity (i.e. a foreign key to the current entity), when

the primary key of the current entity changes, any instances

of the related entity held by a reference property will have this

foreign key property updated. This field is only displayed for

reference type properties.

DAL custom

code Get Pre-

check

Allows you to indicate that the PropertyGet function within the

custom code module associated within the generated code

module is to be called before the generated code retrieves the

value of the property from the base data record.

This allows you to control the value that is returned by the

property and also to prevent the generated code from

performing its default property value retrieval action.

An example of where you may need to do this is where a base

field's value is (either wholly or in-part) derived from the

presence of a foreign key within the record. In this case, if

the foreign key is blank, you may well want to avoid a

pointless roundtrip to the datasource to derive the property

value or return a custom value (from within your custom code)

indicating a non-existing foreign key.

Please refer to the Integrating Custom Code chapter for

further details on this topic.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 32

Get Post-check Allows you to indicate that the PropertyGet function within the

custom code module associated within the generated code

module is to be called after the generated code retrieves the

value of the property from the base data record.

This allows you to control the value that is returned by the

property if required.

An example of where you may need to do this is where you

wish to control the final formatting of a string property value.

Please refer to the Integrating Custom Code chapter for

further details on this topic.

Underneath the Property options GroupBox area is an input field where you may

enter a description of the field. This value will be initially set to the "Notes"

section of the extended dictionary definition of the associated base field. The

value of this field will be used in the XML-based IntelliSense help comments within

the generated BAL code module.

At the foot of the property definition area is a tab control allowing you to enter

further definition details.

The first tab, "Input Criteria", allows you to define the automatic property value

formatting and validation that will be performed whenever a property value is

retrieved or assigned. Input criteria is only available for Int32/64,

Double/Decimal, DateTime and String property types representing physical data.

The fields presented in this tab are described in the following grid:

Input Field Description

Use extended

dictionary

settings

Allows you to indicate that the settings to be used for

formatting/validation are to be sourced at run-time from the

extended dictionary definition of the associated base field. If

this value if checked, the input fields that are covered by

extended dictionary are disabled and display the settings

currently held within the extended dictionary. Otherwise, the

values must be set and maintained manually within this tab.

Default prompt Used by some of the Solution Objects interface creation RAD

tools as the default input label associated with an input

control bound to this property.

Default value When a new instance of an entity is created, this value will be

set as the initial value of the property.

Mandatory

input

Allows you to indicate that this property must contain a value

before the entity data can be saved.

Input range Allows you to indicate the minimum allowable value for this

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 33

(Min) property. This value is ignored for Boolean property types.

Input range

(Max)

Allows you to indicate the maximum allowable value for this

property. This value is ignored for Boolean property types.

Input casing Allow you to specify the case conversion that will be

automatically applied to any values assigned to this property.

This value is ignored for Boolean property types.

Database

subroutine

Allows you to specify the name of the database server

resident subroutine to be automatically called in order to

validate any value assigned to the property. This subroutine

must contain 5 arguments in its signature as follows:

Arg#1 - The value for validation (this will be in external display

format)

Arg#2 - The current item ID (may be blank for new instances)

Arg#3 - The (current) whole item string

Arg#4 - The value to be used (set on entry to the same value

as Arg#1) - must be in external display format - i.e.

not in internal database format.

Arg#5 - Validation error. Leave blank if validated OK

An example of such a subroutine signature definition is as

follows:

SUBROUTINE VALIDATE.PROPERTY (CANDIDATEVALUE, ITEMID, ITEMDATA,

VALIDATEDVALUE, ERRORMSG)

Note, it is good efficient practice to clear the values of

arguments 1, 2 and 3 on exit from the subroutine to optimize

network traffic.

Use extended

call signature

If this checkbox is ticked, the number of arguments that must

be supplied to the specified database subroutine must be

extended (as defined above) to include 3 extra arguments as

follows:

Arg#5 - The name of the associated BAC and DAC. These 2

names are separated by a char 253 (VM).

Arg#6- The name of the property being validated.

Arg#7- The value of the property when the data was originally

retrieved from the data source.

Arg#8 - Validation error. Leave blank if validated OK

An example of such a subroutine signature definition is as

follows:

SUBROUTINE VALIDATE.PROPERTY (CANDIDATEVALUE, ITEMID, ITEMDATA,

VALIDATEDVALUE, ENTITYNAMES, CURRENTVALUE, PROPERTYNAME,

ERRORMSG)

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 34

Note, it is good efficient practice to clear the values of

arguments 1, 2, 3, 5, 6 and 7 on exit from the subroutine to

optimize network traffic.

The second tab, "Enumeration List", allows you to define whether the list of

potential values for this property are to be represented as an enumeration type.

This will ensure that only a finite set of values can ever be assigned to the

property.

Enumeration lists are only available for Int32/64, Double/Decimal and String

property types with the exception that they are not available for properties

representing foreign keys. If the enumeration list option is not available, the

Enumeration List tab content will be blank.

If allowed, the enumeration tab displays the following content:

The top checkbox allows you to indicate that an enumeration list is to be used.

The grid and buttons beneath allow you to add/edit/remove enumeration entries.

Each enumeration entry comprises 2 values:

Enumeration name - The name of the enumeration item as it will appear in the

generated code.

Database value - The raw database field value that this enumeration item

represents.

Note, an additional enumeration item named "UnknownValue" is automatically

generated as part of the enumeration type. This value will be chosen if the

database record contains a value which is not contained within the specified list of

enumeration database values.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 35

Property View - Multi-valued Fields

This view allows you to maintain the definition of which properties are to be

included on the interface of the class based on the presence of multivalued fields

within the base file.

The content and operation of this view is very similar to that of the Single-valued

view with the exception that several additional property types may appear in the

Properties to generate grid and some additional input fields may be present within

the Property options GroupBox area.

The potential additional Property Types are listed in the following grid:

Property Type Description

String-based text version A string representation of a multivalued field value.

Internal multivalue separators will be replaced with

a custom defined character/string.

SvArray of .NET values An SvArray of .NET values. Please refer the

Dynamic Array Representation of Data section

below for more details on this topic.

SvArray of string

equivalent values

An SvArray of string equivalent values. Please refer

the Dynamic Array Representation of Data section

below for more details on this topic.

The additional Property option input fields are listed in the following grid:

Input Label Description

VM The character(s) to be used to replace value marks within a

text representation property type. If left blank, CRLF will be

used.

SVM The character(s) to be used to replace subvalue marks within

a text representation property type. If left blank, ";" (semi-

colon) will be used.

Property View - Sub-valued Fields

This view allows you to maintain the definition of which properties are to be

included on the interface of the class based on the presence of multivalued fields

within the base file.

The content and operation of this view is very similar to that of the Multi-valued

view with the exception that several additional property types may appear in the

Properties to generate grid.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 36

The potential additional Property Types are listed in the following grid:

Property Type Description

SmvArray of .NET values An SmvArray of .NET values. Please refer the

Dynamic Array Representation of Data section

below for more details on this topic.

SmvArray of string

equivalent values

An SmvArray of string equivalent values. Please

refer the Dynamic Array Representation of Data

section below for more details on this topic.

Property View - Nested Groups

This view allows you to define properties that represent the presence of nested

data within a base file's record structure, for example, an OrderLines property

representing a MultiValue group of order line details. Nested group properties are

only available for non-nested and multivalue nested entities.

Each nested group property will contain a reference to the entity(s) representing

the nested data at the next nested-level down from the entity's own nested data

level. Thus, for non-nested (top-level) entities this means that each multivalue

group within the record structure may be represented by a nested group property;

this is dependent, of course, on there actually being an entity defined within the

model which is mapped to the mv group in question.

For entities representing multivalue nested data, each subvalue group within the

associated multivalue group may be represented by a nested group property.

Nested group properties, by definition, always manifest themselves as collective

instances of the related entity.

The content of the Nested Groups property view is shown below:

For non-nested data (top-level) entities the Nested Group Names grid displays the

multivalue groups present within the record structure. For entities representing

multivalue nested data the Nested Group Names grid displays the subvalue groups

present within the multivalue group associated with the entity.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 37

The Property details groupbox area to the right of the grid allows you to enter

various pieces of definition information as described in the grid below:

Input Field Description

Generate

property

Indicates whether a property is to be generated for the

currently selected group.

Property name Name of the property as it will appear within the generated

code.

Description Description of the property. The value of this field will be

used in the XML-based IntelliSense help comments within the

generated BAL code module.

Nested entity The entity that is mapped to the currently selected group.

Property View - Calculations

This view allows you to define properties that represent a calculation based upon

all values of a given property within a collective instance of the entity.

A calculated property will only return a value if the entity instance being

referenced belongs to a collective instance. If this is the case, each instance within

the collection returns the same value for each calculation property (except for a

percentage calculation, which will, of course, return a potentially different

percentage value for each instance). This feature is particularly useful in data

binding where an input control may be bound to a calculation property and used

to display, for example, a running total of a property within the collection of

entities. As the value of the property in any of the collection instances changes,

the value of the calculated property changes and will be automatically updated and

redisplayed.

The content of the Calculations property view is shown below:

The grid on the left-side of the display lists all the calculation properties currently

defined. The input areas to the right of the grid allow you to maintain the

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 38

definition of the currently selected calculation property. The Add and Remove

button can be used to add and remove entries from the grid.

The Singular instance property GroupBox area allows you to enter various pieces

of definition information as described in the following grid:

Input Field Description

Property name Name of the property as it will appear within the generated

code.

Description Description of the property. The value of this field will be

used in the XML-based IntelliSense help comments within the

generated BAL code module.

Data type The .NET data type of the property.

The Calculation definition GroupBox area allows you to enter additional definition

information describing the nature of the required calculation as described in the

grid below:

Input Field Description

Calculation type The type of calculation to be performed.

Source property The property to supply the value to be used in the calculation.

Only numeric-based properties are listed here.

Dynamic Array Representation of Data

Because Solution Objects is primarily a MultiValue database-oriented tool, it is

logical and necessary to be able to present multivalued data in its native form, i.e.

the traditional MultiValue dynamic array. For this reason, Solution Objects, by

means of one of the available property types, allows you to expose multivalue data

as a dynamic array.

There are 4 implementations of dynamic arrays provided by Solution Objects, as

described in the grid below:

Array Type (Name) Description

MvArray Holds multivalued data.

SvArray Holds subvalued data.

SmvArray Holds submultivalued data (2 dimensional)

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 39

SmvDynamicArray Holds submultivalued data (2 dimensional). This

implementation is for use by developers who wish to use a

dynamic array in a standalone manner, as opposed to the

first 3 which are used as property types within the context

of DAC/BAC code generated by Solution Objects.

Each array implementation comes in the form of a Generic class, i.e. each array is

declared in a strongly-typed manner in order to provide better performance and

reduce run-time errors relating to data type mismatches.

The interface of each implementation is very similar and is fully documented in the

form of XML-based IntelliSense help within Visual Studio.

As an example, if there is a field which holds the lines of an address as a series of

multivalues and this field is exposed as an MvArray property called "AddressLines",

the following code could be used to access the 2nd line of the address:

VB:

Dim addressLine2 As String = MyEntity.AddressLines(2)

C#:

string addressLine2 = MyEntity.AddressLines[2];

Maintaining Datasource Schema

The Data Access Class maintenance window allows you to maintain the underlying

schema upon which the entity is based. To do this right-click the relevant row

within the Fields grid (on any of the Single, Multi-valued or Sub-valued views) and

select the required maintenance option (edit, add or delete).

Adding a new schema field requires you to supply several datasource specific

details:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 40

The upper half of this window allows you to enter the details of the native

dictionary item of the field. The lower half allows you to enter the name of the

first property (others may be possible depending on the field type) along with a

description of the property.

If the "Add New Field" option is selected for the Multi-valued or Sub-valued Fields

grid, you are able to specify the multivalue and (where relevant) the subvalue

group that the new field is to belong to. Existing group names are displayed via a

ComboBox control or you can type in a new group name to create a new group.

Selecting the "Edit Selected Field" option from the right-click menu of the Field

grid displays a window which allows you to edit both the native and extended

dictionary details associated with the field. For more information on this please

refer to the "Extended Dictionary Definitions" chapter of the Core Objects

Developer Guide.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 41

Selection Method Maintenance

Solution Objects supports the concept of "Selection Methods". Each selection

method is represented as a function method on the interface of the DAC and

subsequently on one of more of the BACs that derive from it. Some selection

methods may optionally be exposed as properties instead of methods.

Selection methods allow you to predefine and abstract a variety of selection

actions relating to the entity. Users (developers) of the resulting BAL will be able

to utilize these selection methods to invoke the selection actions that you define

without any knowledge of the underlying datasource or mechanism by which the

selection is being executed.

In addition to being able to define custom selection actions, you are able to

include 2 standard selection methods as static (Shared) methods on the DAC. The

2 checkboxes at the top of the Selections tab allow you to indicate whether you

wish to include either of these 2 standard selection methods, which are described

in the grid below:

Selection Method

Name

Description

SelectAll Allows the entire contents of the base file to be selected.

SelectGeneric Allows the contents of the base file to be selected/sorted

based on datasource specific select/sort command syntax.

The Selections tab provides 3 different views of the selection methods defined

within the DAC.

The first view is a read-only summary display.

The last 2 views provide the ability to define 2 different types of selection

methods.

The 3 selection method views are described in the following sections.

Selections View - Summary

This view allows you to see the overall picture of which selection methods are

currently defined for the class. If you double-click one of the rows within the

displayed grid, you will be taken into one of the other views to see the details of

that selection method definition.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 42

Selections View - Self (Static)

This view allows you to maintain the selection methods that select instances of the

entity itself. That is, the return value of a Self-selection method is a collective

instance of the entity on whose interface this selection method is defined.

The Self-selection view shows the following display:

The grid on the left of the display lists the current Self-selection methods. The

region to the right of the grid allows you to maintain the currently selected

method.

Each Self-selection method can be defined to require several arguments to be

passed as part of its call signature. The Arguments groupbox area allows you to

specify each of these arguments as required.

The grid below describes the input fields used to define a Self-selection method:

Input Field Description

Selection name Name of the selection method as it will appear within the

generated code.

Description Description of the selection method. The value of this field

will be used in the XML-based IntelliSense help comments

within the generated BAL code module.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 43

Arguments -

Name

The name of a required argument value as it will appear

within the generated code.

Arguments -

Data Type

The .NET data type of the argument parameter.

Arguments -

Description

Description of the purpose or content of the argument. The

value of this field will be used in the XML-based IntelliSense

help comments within the generated BAL code module.

Selection style Allows you to choose the general style of the selection

method:

• Selection - A supplied select command will be used to

select items from the datasource.

• Subroutine - A database resident subroutine will be used to

perform the selection.

• SingleItem - Only a single item will be selected.

• SingleMultivalue - Only the contents of a single multivalue

position will be selected

• SingleSubvalue- Only the contents of a single subvalue

position will be selected

Each of these different selection styles (and their constituent

definition input fields) are described in the following sections

below.

Select Selection Style - Selection

This selection style allows you to enter a selection and sort clause using the native

syntax of the underlying datasource. The names of any arguments may be

inserted into these clauses to insert run-time supplied values as required.

In the above screenshot, the supplied value of the {OrganizationID} argument will

be inserted into the select clause at run-time, thus allowing the contacts for one

specific organization to be selected.

Select Selection Style - Subroutine

This selection style allows you to specify a database resident subroutine to be

used to perform the selection. Note, this option is only available for entities that

represent non-nested data.

The subroutine that you specify here must contain 7 arguments in its call

signature as follows:

Arg#1 - (input arg) The name of the selection method.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 44

Arg#2 - (input arg) The calling context. If you wish to pass in a static piece of

data (string) specific to a selection method into a subroutine this

string may be specified after the subroutine name within the DAC

definition. For example, if the Subroutine name field is set as

"GETSAVELIST CONTACT123", then GETSAVELIST is the name of the

subroutine and its 2nd argument will be set to "CONTACT123" on

being called.

Arg#3 - (input arg) An attribute mark separated list of argument names. This

corresponds to the argument names defined for the selection

method.

Arg#4 - (input arg) An attribute mark separated list of argument values. This

corresponds to the arguments defined for the selection method.

Arg#5 - (input arg) The sort specification (if supplied).

Arg#6 - (output arg) Indicates the return style of the selected list of item IDs.

This argument must be set to one of the following values:

-1 = No items selected. Additional descriptive information can be

optionally provided in Arg#7

0 = An attribute mark separated list of item IDs contained in Arg#7

1 = An active select variable contained in Arg#7

2 = A saved list, the name of which is held in Arg#7

 Any other value will be regarded as an error message and the

selection action will be cancelled with an exception being thrown to

the end application.

Arg#7 - (output arg) The selected item IDs, the format of which will be

indicated by Arg#5.

An example of a subroutine call signature definition would therefore be:

SUBROUTINE CONTACT.SELECT.CHIEFS (SELECTIONNAME, CONTEXT, SUBARGNAMES, SUBARGVALUES,

SORTSPEC, RETURNSTYLE, ITEMIDS)

Select Selection Style - SingleItem

This selection style is useful if all of the required entity instances can be retrieved

with a single item read of the base file. This will be much more efficient than

performing a selection specifying the required single item ID. It can be useful if

any of the following types of selections are required:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 45

• A selection list consisting of only a single non-nested entity instance. For

example, in a data bound form where the item ID is either entered by the

user or passed in from another section of code.

• A selection list consisting of only the multivalue nested entities relating to

a single parent entity, for example, in the SOP demo database all the order

lines relating to just a single sales order.

• A selection list consisting of only the subvalue nested entities relating to a

single top-level parent entity, for example, in the SOP demo database all

the deliveries relating to just a single sales order.

This selection style requires that you specify only a single argument which will be

assumed to contain the required item ID.

Select Selection Style - SingleMultivalue

This selection style is only relevant for entities that represent either multivalue or

subvalue nested data and is useful if all of the required entity instances can be

retrieved with a single item read of the base file. This will be much more efficient

than performing a selection specifying the required single item ID. It can be

useful if any of the following types of selections are required:

• A selection list consisting of only a single multivalue nested entity, for

example, in the SOP demo database a specific order line.

• A selection list consisting of only the subvalue nested entities relating to a

single multivalue within a single top-level parent entity, for example, in the

SOP demo database all the deliveries relating to just an order line.

This selection style requires that you specify 2 arguments, the first of which will

be assumed to contain the required top-level entity item ID, the second of which

will be assumed to contain the required multivalue position.

Select Selection Style - SingleSubvalue

This selection style is only relevant for entities that represent subvalue nested data

and is useful if all the required entity instances can be retrieved with a single item

read of the base file. This will be much more efficient than performing a selection

specifying the required single item ID. It can be useful if a selection list consisting

of only the subvalue nested entity relating to a single subvalue within a single

multivalue within a single top-level parent entity is required, for example, in the

SOP demo database a single order delivery.

This selection style requires that you specify 3 arguments, the first of which will

be assumed to contain the required top-level entity item ID, the second will be

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 46

assumed to contain the required multivalue position and the 3rd argument will be

assumed to contain the required subvalue position.

Selections View - Singular Instance

This view allows you to maintain the definition of selection methods that select

one or more entity instances that in some way relate to a single instance of the

same or a different entity type. Because this type of selection method is an

instance method (as opposed to Self-selection methods which are static methods

on the class) the selection process can, if required, use property values from the

source entity instance.

The Singular Instance selection view shows the following display:

As in Self-selection methods, the grid on the left of the display lists the current

Singular Instance selection methods. The region to the right of the grid allows you

to maintain the currently selected selection method.

The Selection name and Description input fields are as per Self-selection methods.

The Expose as property checkbox allows you to control the way in which the

method is manifested on the interface of the class. This subject is discussed in

detail in the following section.

All Singular Instance selection methods need to identify the type of entity to be

selected along with a Self-selection method defined for that entity type. Based on

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 47

the Self-selection method that is selected, the list of arguments defined for that

method are listed in the Arguments grid. You can then select for each of these

arguments the property from this entity instance that is to supply the argument

value at run-time. If no property name is specified for an argument, the argument

value will appear on the call signature of the Singular Instance selection method.

Singular Instance selection methods are often used to represent parent-child

relationships and so, for this selection method type, you can indicate (by ticking

the Cascade deletes checkbox) that when a parent instance is deleted, the child

entities (as defined by the result of this selection method) are also to be deleted.

The Synchronize foreign keys option is only relevant if the child entities contain a

foreign key property pointing back to the parent entity. If this is the case and if

this option is ticked then if the primary key of the parent entity changes (as will be

the case, for example, when the primary key of a new parent entity instance is

assigned via auto ID generation on update) the foreign key property of all child

entities will be set to the new primary key of the parent.

Exposing Selection Methods as Properties

A single instance selection method may be represented as either a method or a

property on the interface of the class.

The main advantage of exposing it as a property is that you can use it directly with

Visual Studio data binding tools because it will be included in the list of bindable

properties within the Data Sources window.

Conversely, exposing it as a method provides you (by the presence of multiple

overloads to the method) with slightly more control as how the selection method

is executed.

Please refer to the chapter on Reading and Selecting Data for more details on the

control offered by the various overloads of a selection method.

Subroutine Method Maintenance

The 3rd possible type of member on the interface of a DAC is a method that is

associated directly with a database resident subroutine. These are called

Subroutine Methods.

The Subroutine Methods tab allows you to maintain the definitions of these types

of methods as shown below:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 48

In the above display, the top grid displays the currently defined subroutine

methods. The bottom area of the tab area allows you to maintain the definition of

the currently selected subroutine method as described below:

Input Field Description

Method name Name of the subroutine method as it will appear

within the generated code.

Description Description of the subroutine method. The value of

this field will be used in the XML-based IntelliSense

help comments within the generated BAL code

module.

Subroutine name Name of the database resident subroutine to be

called.

Return value data type .NET data type of this method's return value. This

may be set to "(None)" if the method is to be

declared as having no return value.

Return value description Description of the subroutine's return value. The

value of this field will be used in the XML-based

IntelliSense help comments within the generated BAL

code module.

Include as method on

singular instance

Indicates if the subroutine method is to be declared

as an instance method on the singular class.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 49

Include as (static)

method on singular class

Indicates if the subroutine method is to be declared

as a static (class-level) method on the singular class.

Include as method on

collective instances

Indicates if the subroutine method is to be declared

as a static (class-level) method on the collective

class.

The Subroutine arguments grid allows you to define each argument that the

database subroutine requires. The arguments in this grid must appear in the

same order as that declared on the call signature of the subroutine. The cells of

each argument row within the grid are described below:

Column Heading Description

Name The name of a required argument value as it will appear

within the generated code.

Data Type The .NET data type of the argument parameter.

Instance Property Indicates the property that is to provide the value at run-

time for this subroutine argument. If this cell is left blank,

the argument will be included on the call signature of the

subroutine method.

Description Description of the purpose or content of the argument. The

value of this field will be used in the XML-based IntelliSense

help comments within the generated BAL code module.

If the subroutine method is defined as having a return value then an extra

argument will be automatically added behind the scenes at the end of the call

signature by Solution Objects when calling the subroutine. Thus, for example, if

you define a subroutine method with 2 arguments and a return value, the actual

database subroutine must be defined with 3 arguments – the final argument being

treated by Solution Objects as the return value of the subroutine.

Datasource Update Control Maintenance

The Datasource Update Control tab allows you to maintain 2 aspects relating to

the control of how Solution Objects interacts with the underlying datasource for

this DAC:

1. The use of a custom database resident subroutine to handle one or more

types of database interaction.

2. The specification of which properties are significant in the context of record

updating when optimistic locking is being used.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 50

The content of the Datasource Update Control tab is shown below:

Note, the "Reading single existing instances" option also controls existence

checking actions.

Also note, custom datasource updating is not available for entities that represent

nested data.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 51

Custom Datasource Update Control

The top section allows you to indicate which database actions are to be handled by

your custom subroutine as identified in the Subroutine name input field. This

subroutine will be called in place of the standard Solution Objects code base.

Please note however that Subroutine-based Selection Methods and Subroutine

Methods will still be processed as normal (i.e. using the defined subroutine) and

will not use the custom datasource subroutine

The subroutine that you specify here must contain 8 arguments in its call

signature. The usage of these 8 arguments varies slightly depending on the type

of database action being performed, however the use of the first 2 and last

argument is constant:

Arg#1 - (input arg) The singular name of the associated DAC and BAC. These

2 names are separated by a char 253. For database action type 'S'

(see below) this argument also holds the name of the selection

method being used (separated from the singular names by a char

254).

Arg#2 - (input arg) Database action type indicator. This argument will be set

to one of the following values:

 C = Create a new database item.

 R = Read a single existing database item.

 E = Check if a given database item currently exists.

 S = Select a list of existing database items based on a selection method.

 I = Select a list of existing database items based on a list of item

IDs. (This selection style is used internally by Solution objects).

 U = Update (write) a database item.

 D = Delete a database item.

 O = On-demand data field value recalculation.

Arg#8 - (output arg) Error message text. Empty string indicates no error.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 52

The grids below document the usage of arguments 3 through 7 for the various

database action types. Arguments 3 through 6 are input arguments. i.e. their

values will be set on entry by Solution Objects. Argument 7 (for those types where

it is relevant) is an output argument and its value should be set by your

subroutine.

Database action type : C - Create a new database item

Argument # Description

3 The relevant item ID. This argument will only contain a value on

entry if a primary key value has been supplied by the calling client

code and needs to be set on exit to the ID of the new item (if

relevant).

4 Lock type indicator. Will be one of the following values:

"N" : No lock required

"P" : Pessimistic lock required

"O" : Optimistic lock required

Note, if a pessimistic lock cannot be obtained, Arg#8 should be set

to an appropriate error message.

5 n/a - passed as blank string.

6 n/a - passed as blank string.

7

(Output)

Attribute mark (char 254) separated list of item data elements.

Note, the order of data elements within this argument needs to be

as per indicated by the base fields used within the DAC definition.

Database action type : R - Read a single existing database item

Argument # Description

3 The relevant item ID.

4 Lock type indicator. Will be one of the following values:

"N" : No lock required

"P" : Pessimistic lock required

"O" : Optimistic lock required

Note, if a pessimistic lock cannot be obtained, Arg#8 should be set

to an appropriate error message.

5 n/a - passed as blank string.

6 n/a - passed as blank string.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 53

7

(Output)

Attribute mark (char 254) separated list of item data elements.

Note, the order of data elements within this argument needs to be

as per indicated by the base fields used within the DAC definition.

Database action type : E - Check if a given database item currently exists

Argument # Description

3 The relevant item ID. This argument may contain more than one

item ID. If this is the case each will be separated by a value mark

(char 253) character.

4 n/a - passed as blank string.

5 n/a - passed as blank string.

6 n/a - passed as blank string.

7

(Output)

'0' to indicate that the item does not exist or '1' to indicate that it

already exists. If more than one item ID has been supplied in

Arg#3, this should be a value mark (char 253) separated list of 1's

and 0's corresponding with the supplied list.

Database action type : S - Select database items based on selection criteria

Argument # Description

3 The selection clause of the underlying static (self) selection

method.

4 The sort clause of the underlying static (self) selection method.

5 An attribute mark (char 254) separated list of argument names.

Corresponds to the argument names defined for the selection

method being invoked.

6 An attribute mark (char 254) separated list of supplied argument

values. Corresponds to the argument names defined for the

selection method being invoked.

7

(Output)

List of selected items. This needs to be a series of item data

blocks as per Type R, with each block separated by char(30) and

with the item ID of each item added to the front the item followed

by an attribute mark.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 54

Database action type : I - Select database items based on item IDs list

Argument # Description

3 n/a - passed as blank string.

4 n/a - passed as blank string.

5 Attribute mark (char 254) separated list of required item IDs.

6 n/a - passed as blank string.

7

(Output)

List of selected items. This needs to be a series of item data

blocks as per Type R, with each block separated by char(30).

Database action type : U - Update (write) a database item

Argument # Description

3 The relevant item ID. If the item ID is adjusted by the routine this

argument needs to be set on exit to the new ID.

4 The record contents (attribute mark separated) as currently held in

memory on the client.

5 n/a - passed as blank string.

6 n/a - passed as blank string.

7 n/a - passed as blank string.

Database action type : D - Delete a database item

Argument # Description

3 The relevant item ID.

4 The record contents (attribute mark separated) as currently held in

memory on the client. Note, this argument will only contain a

value if the instance-based overload of the Delete method has

been invoked.

5 n/a - passed as blank string.

6 n/a - passed as blank string.

7 n/a - passed as blank string.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 55

Database action type : O - On-demand data field value recalculation

Argument # Description

3 The relevant item ID.

4 The record contents (attribute mark separated) as currently held in

memory on the client.

5 Attribute mark (char 254) separated list of dictionary item names

requiring value recalculation.

6 n/a - passed as blank string.

7

(Output)

Attribute mark (char 254) separated list of field data values. Note,

the order of data elements within this argument needs match the

list of dictionary names as passed in Arg#5

Optimistic Locking Control

If optimistic locking is specified as part of a read or selection action, Solution

Objects needs to know which fields within the record are to be considered as

"significant" when it comes to comparing the initial read image of a record with

the current database image at the time of update commit.

The lower half of the Datasource Update Control tab allows you to define which

fields are "significant" in this context.

The default setting is "All physical fields". This results in the entire data content of

the record being used to determine whether an update commit is allowed to

proceed.

The "Subset of physical fields" option allows you to restrict the comparison

process to use only a subset of physical fields. When this option is selected, the

following display is shown:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 56

This allows you to define the required (physical) field subset.

The third optimistic locking option is "Use update stamp property". Each non-

primary/foreign key physical property with a data type setting of "String" may be

flagged as holding an update stamp. Only one such property within the DAC as a

whole may be chosen to perform this role. If a property is currently identified as

an update stamp property its name will be shown alongside the Use update stamp

property radio button, otherwise "<not set>" will be displayed - as illustrated

above.

The content of the update stamp property will be controlled by Solution Objects,

and comprises a string with the following structure:

{timestamp}_{guid}_(username}

Where:

{timestamp} is a client-based system time stamp of the format:

yy.MM.dd.HH.mm.ss.ii (ii = milliseconds)

{guid} is an eight-character GUID

{username} is the client-based (Windows) user name

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 57

Security Maintenance

The Security tab allows you to maintain the security group profile of one or more

properties within the DAC.

The security mechanism to which this information relates is described in detail

within the User-based Property Security chapter.

The initial setting of the Class property security style will default to "No security"

unless it has been set otherwise by the entity generation process.

If the "Same security for all properties" option is selected, then all properties

within the DAC will be given a security profile as defined by the following display:

This allows you to add items from the Security Group grid on the right into the

profile grid on the left. You can also add new or remove existing security groups

by using the Create and Delete buttons (note, the list of security groups is held at

entity model version level).

Entries added to the profile grid on the left may have their Access Level set as

required: None, Read-only or Full.

If the "Custom security per property" option is selected, then each property within

the DAC may be given a unique security profile as defined by the following

display:

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 58

The top half of this display allows you to select a property. The "(Default)"

property name is used to define the security profile for all properties that do not

have a security profile set explicitly.

The bottom half of the display allows you to specify the security profile for the

currently selected property and works in exactly the same manner as per the

"Same security for all properties" option described above.

Schema Mismatch Warnings

On entering the DAC maintenance screen, Solution Objects will automatically

compare the schema details currently held within the DAC definition with those

currently defined for its base file. If any mismatches are detected a warning

message will be given.

Some mismatches can be resolved automatically by Solution Objects - if any of

these types are found a message is displayed that identifies the mismatches and

informs the user that the automatic adjustment(s) to the DAC definition will be

applied on next save of the DAC.

mv.NET Solution Objects Developer Guide - Maintaining Data Access Class Definitions

Page 59

If any mismatches are found that cannot be resolved automatically you will need to

exit from the DAC maintenance screen and to run the "Validate Data Access Class

Definition" menu option (from the Data Access Class node's right-click context

menu) and a message to this effect is displayed by the DAC maintenance screen.

Please refer to the Validating Entity Definitions chapter for full details on validating

DAC definitions.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Class Definitions

Page 60

Maintaining Business

Access Class Definitions

This chapter describes how you are able to maintain the definition of Business

Access Classes associated with an Entity .

Overview

Each entity may have one or more Business Access Classes (BAC) defined. A BAC

is always based on the DAC definition for that entity.

Ultimately, the code generation process of Solution Objects will allow you to group

together (as required) a collection of BACs and present them collectively within a

Business Access Layer (BAL) assembly. It is the BAL assembly (and consequently

the constituent BACs within that assembly) that application developers reference

and utilize within their application.

The purpose of a BAC, therefore, is to refine or restrict the interface or functioning

of the underlying a DAC such that a class that is more suited or efficient for the

purposes of a given community of developers can be produced.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Class Definitions

Page 61

Reasons supporting the concept of a BAC include:

1. It allows a complicated or very rich DAC interface to be presented in a

simplified manner.

2. It allows properties that represent sensitive or confidential data to be omitted

from the interface of the class that is ultimately presented to application

developers, thus denying them access to that data.

3. It allows properties that represent very large quantities of data to be omitted

from the interface of the class that is ultimately presented to application

developers, thus preventing them from accidently triggering very large data

movements from datasource to client and vice-versa.

Each BAC identifies the following:

1. The subset of DAC members (properties, selection methods and

subroutine methods) that are to be included on its interface.

2. The properties that are to be made available in a read-only manner.

3. The sections of data within the DAC that are to be retrieved as part of the

initial data retrieval process.

Creating a New BAC

Each entity node within the Data Manager's TreeView has a sub-node named

"Business Access Classes". It is within this node that the BACs for an entity are

listed.

You may create a new BAC by right-clicking the Business Access Classes node and

selecting the "Create New Business Access Class" option from the resulting context

menu. A dialog prompting you for the singular and collective name of the new

BAC will then be displayed.

The 2 input fields contained in the Create New Business Access Class popup dialog

box default their content to the singular and collective names of the underlying

DAC - you may change them as required.

Clicking the Accept button will result in a new node being created (using the

supplied singular name) within the Business Access Classes node.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Class Definitions

Page 62

Maintaining the Definition of an Existing BAC

By double-clicking any of the BAC nodes listed within the Business Access Classes

node for an entity you are taken into the BAC maintenance window:

At the top of this form you are able to enter a description for the BAC as a whole.

The value of this field will be used in the XML-based IntelliSense help comments

within the generated BAL code module.

Beneath this field you are able to maintain the 3 definition groupings of the BAC

as described in the following sections.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Class Definitions

Page 63

Defining the Properties of a BAC

The Properties tab of the BAC maintenance window allows you identify which

properties of the underlying DAC are to be exposed by the BAC. It also allows you

to identify whether each property is to be exposed in a read-only manner and also

the property data that is to be retrieved as part of the DAC's initial data retrieval

process.

The first (ComboBox) input field on the Properties tab allows you to identify which

category of properties are to be retrieved as part of the DAC's initial data retrieval

process.

It is important to understand here that if a property is not included in the list of

those that are retrieved as part of the initial data retrieval process it does not

necessarily prevent access to that property - it simply means that a further

roundtrip to the datasource will be required if any application code references that

property.

Clearly, the idea here is that the properties with a high likelihood of being

referenced by application code should be included in the list of those that are to

be retrieved as part of the initial data retrieval process.

There are 3 choices available in the Initial property retrieval style ComboBox:

All physical properties only : This option forces all physical (but not calculated)

datasource data to be initially retrieved.

All physical properties (physical and non-physical) : This option forces all physical

datasource data along with all datasource data relating to calculated base fields

referenced by DAC properties to be initially retrieved. Note, in a DAC with many

properties based on calculated base fields, this may result in degraded datasource

performance.

Specified properties only : This option forces datasource data for base fields (both

physical and calculated) referenced by a specified subset of DAC properties to be

initially retrieved.

Beneath the Initial property retrieval style ComboBox are 3 checkboxes, described

below:

Make "No setter" the default Read-only style : This option controls which style of

property setter is used when the Custom property settings option is unchecked.

Solution Objects supports 2 different ways to implement a read-only property.

The first is to flag the property as read-only and to not generate a property setter

mv.NET Solution Objects Developer Guide - Maintaining Business Access Class Definitions

Page 64

clause. The second way is to not flag the property as read-only but to include a

empty (no code) property setter.

The reason for including the second option is to ease the task of working with

some aspects of .NET data binding. Some .NET controls generate exceptions if a

read-only property (i.e. one with no setter clause) is used in a edit context. Thus,

the "empty setter" style of read-only property works around this limitation.

Property Get custom code link : This option allows you to indicate whether the

Property Get clause within the custom code module is called for properties within

this BAC.

There is a very slight overhead incurred in calling into the custom code module for

each property value retrieval action. Thus, this option can be unchecked if you are

certain that no custom code needs to gain sight of a property value before control

is returned to application code.

Please refer to the Integrating Custom Code chapter for more information relating

to custom code modules.

Property Set custom code link : This option performs the same function for the

Property Set clause as its Property Get counterpart above.

The grid in the lower portion of the Properties tab allows you customize various

settings.

The Include column allows you to indicate whether a DAC property is to be

included on the interface of this BAC. This column will only be editable if the

Custom property settings checkbox is checked.

The Read-only column allows you to indicate the read-only style of a property.

This column will only be editable if the Custom property settings checkbox is

checked. If the Custom property settings is unchecked, the value for this column

for all non-physical properties can be controlled using the 'Make "No setter" the

default Read-only style' checkbox.

The Initial Retrieval column allows you to indicate whether the base field data

associated with a property is to be retrieved as part of the DAC's initial data

retrieval process. This column is only editable if the Initial property retrieval style

is set to either "All physical properties and specified non-physical properties" or

"Specified properties only". If the value of one of the cells in this column is edited,

the Custom property settings checkbox is forced into a checked state.

The Include All/None buttons at the foot of the Properties tab allows you to alter

the value of all cells in the Include column of the grid in a single action. These

buttons are only enabled if the Custom property settings checkbox is checked.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Class Definitions

Page 65

The Retrieve All/None buttons allow you to alter the value of all cells in the Initial

Retrieval column of the grid in a single action. These buttons are only enabled if

the Initial property retrieval style is set to either "All physical properties and

specified non-physical properties" or "Specified properties only". If the Initial

property retrieval style is set to "All physical properties and specified non-physical

properties", the Retrieve None button will only uncheck cells for properties

associated with calculated base fields.

Defining the Methods of a BAC

The Selections and Subroutine Methods tabs both function in the same manner.

They display a grid listing the methods present within the DAC. By default, all

methods are included. If you wish to omit any methods, you must check the

"Custom xxx inclusion" checkbox and then use the Include column of the grid to

indicate which methods are required for the BAC.

The Include All/None buttons at the foot of the tab are only enabled if the

"Custom xxx inclusion" checkbox is checked.

As with properties, if the custom inclusion option is unchecked, any new methods

added to the underlying DAC will be automatically including in this BAC.

Otherwise, you will need to go back into the BAC maintenance screen and

explicitly include them as necessary.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Layer Definitions

Page 66

Maintaining Business

Access Layer Definitions

This chapter describes how you are able to maintain the definition of the Business

Access Layers associated with an Entity.

Overview

The Data Access Layer (DAL) is an implicit concept within Solution Objects in that

it is simply the total of all DACs defined for an entity. You do not need to do any

work to create the DAL other than to define all the DACs.

The Business Access Layer (BAL), on the other hand, is an explicit concept, that is,

it is something which you must explicitly define as part of an entity model

definition. Each BAL, ultimately, gets represented as a .NET dll assembly.

A BAL allows you to group together one or more Business Access Classes (BACs) to

indicate which classes need to be present within the generated code that will

eventually manifest the BAL.

You may define any number of BALs. You must, however, define at least one.

Each BAL has its own generated code module produced by the code generation

process.

The concept of a BAL is based around the idea of being able to create a grouping

of BACs that is strongly focused on providing a certain community of application

developers with a set of classes tuned to their specific requirements. This set of

classes must, obviously, provide the level of functionality that they require to

perform their tasks, but it may well be possible to define specific BACs that

mv.NET Solution Objects Developer Guide - Maintaining Business Access Layer Definitions

Page 67

exclude certain non-required functionality in order to reduce the complexity or

size of a class' interface. Specific BACs may also be produced to hide sensitive or

confidential property data.

Thus, the concept of a BAL works closely with the concept of a BAC. A BAC may be

included in any number of BALs.

Creating a New BAL

Each entity model version within the Data Manager's TreeView has a sub-node

named "Business Access Layers". It is within this node that the BALs for an entity

are listed.

You may create a new BAL by right-clicking the Business Access Layers node and

selecting the "Create New Business Access Layer" option from the resulting context

menu. A dialog prompting you for the name of the new BAL will then be

displayed.

Clicking the Accept button will result in a new node being created (using the

supplied name) within the Business Access Layers node.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Layer Definitions

Page 68

Maintaining the Definition of an Existing BAL

By double-clicking any of the BAL nodes listed within the Business Access Layers

node for an entity you are taken into the BAL maintenance window:

The first input field on this form allows you to enter the namespace setting that

will be appended to the root namespace of the entity model.

Next, you can enter the location and names of the 2 code modules that will be

produced for the BAL by the code generation process. Note, you do not enter

language extensions at the end of code file names (e.g. .vb or .cs) - these

extensions will be added automatically by the code generation process depending

on the language selected at generation time.

The Run time environment options allow you to specify which run-time

environment a BAL is targeted at. The code generator adjusts its output according

to which option is selected for a BAL.

The "Silverlight" option should be selected if the assembly generated from this BAL

is going to be used within the browser-resident project of a Silverlight application.

Please refer to the Silverlight Developer guide for more details on this topic.

The “REST service” option should be selected if the generated assembly is going to

be used by an ASP.NET hosted REST service. Please refer to the REST Service

Developer Guide for more details on this topic.

mv.NET Solution Objects Developer Guide - Maintaining Business Access Layer Definitions

Page 69

For all other run-time environments, the “WinFom/WebForm” option should be

selected.

In the lower half of the screen you can specify which BACs within the entity model

are to be included in this BAL.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 70

Validating Entity

Definitions

This chapter describes how you can validate that your entity model definitions are

consistent with both the underlying datasource schema and with each other.

Overview

There is a certain amount of validation performed when you save a DAC definition.

However, this validation is not able to detect all potential problems. For this

reason, there are 2 places within the Data Manager where you can perform explicit

validation of all or part of an entity model:

• Validating a single DAC

• Validating the entity model as a whole

Validating a Single DAC

The right-click context menu of a Data Access Class node contains a menu option called

"Validate Data Access Class Definition". This option allows the details of the associated

DAC to be checked for several potential issues.

Once this option is chosen, the definition of the DAC is read, and the following checks

performed:

• Comparison of the DAC definition with the current schema of the

underlying datasource.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 71

• Validation of various internal keys within the DAC definition.

• Validation of datasource name references within the DAC definition.

Any problems encountered are listed in a grid on the resulting form. The details of each

problem is shown along with a description of the resolution required to remove the

problem. Some problems require you to select an alternative value, in which case the

right-most column of the grid will present the list of available options from which you

may select the required replacement value.

Validating the Whole Entity Model

The right-click context menu of a Version node contains a menu option called "Validate

Model". This option allows the definition details of an entire entity model version to be

validated.

Once this option is chosen, the definition of the version is read, and any validation

errors are displayed within a grid. This grid works in the same way as the DAC

validation form described above.

Other than the fact that this validation form validates an entire version, the other main

difference with the DAC validation window is that the version validation window is

modal, which mean that you can adjust definition details using other windows without

have to close the version validation form. Hence, there is a Re-Validate button at the

bottom of the form which allows you to re-run the validation actions on the current

entity model definitions. Any changes to underlying file schema are also recognized by

the Re-Validate action.

The version validation window has a "Generate Code Modules" button at the foot of the

form that becomes enabled when no validation errors exist. This invokes the standard

code generator window as described in the following Generating Code Modules chapter.

mv.NET Solution Objects Developer Guide - Generating Code Modules

Page 72

Generating Code

Modules

This chapter describes how you can use your entity definitions to generate a series

of source code modules.

Overview

Generating source code is the raison d’être of the Solution Objects functionality

within the Data Manager.

Once you have created at least one DAC, one BAC and one BAL within your entity

model, you are ready to roll! Of course, you will almost certainly have many of

these in your entity definition.

Invoking the Code Generator

Code generation is performed at the entity model version level. Thus, you access

the code generator by right-clicking the relevant version node within your entity

model and selecting the "Generate Code Modules" option from the resulting

context menu.

mv.NET Solution Objects Developer Guide - Generating Code Modules

Page 73

The code generator can also be invoked from within the entity model validation

screen. Please refer to the previous chapter for further details on this topic.

Once the code generator has been invoked, the following window will be

displayed:

The top groupbox area of this screen allows you to enter the location and names

of the 2 code modules that will be produced for the DAL by the code generation

process. Note, you do not enter language extensions at the end of code file

names (e.g. .vb or .cs) - these extensions will be added automatically by the code

generation process depending on the language selected at the foot of this screen.

The middle section of the screen allows you to select which BALs you wish to

include in this code generation action and to also enter the location and names of

mv.NET Solution Objects Developer Guide - Generating Code Modules

Page 74

the 2 code modules that will be produced for each BAL. The settings for each BAL

are drawn from the information previously entered within the BAL maintenance

window.

This center section also allows you to generate an entire Visual Studio solution to

host the generated code if you do not already have one created.

At the foot of the screen you can set several options that control the content of

the generated code. You able to:

• Choose the language that will be used for the code generation action.

• Specify the scope that all DAL interface members will be set to. If you are

going to combine the DAL code modules with the BAL code modules in a

single Visual Studio project you are best selecting the "Internal" scope

option. This will result in the DAL classes being excluded from the public

interface of the generated assembly.

If you are going to create a separate assembly just for the DAL, you will

need to select the "Public" scope option.

• Indicate whether you would like the schema (dictionary) data of the files

upon which your entities have been based to be embedded within the

generated code. This will increase the size of your assembly but will

improve application performance.

Finally, as the code generator processes the entity model, is produces a trace of its

progress. If errors are encountered, you may wish or be requested by BlueFinity

support to activate the Verbose tracing option in the bottom right of the form.

Clicking the Generate button will first save the settings in this screen and will then

initiate the code generation process. The code generator displays its progress

throughout the generation action.

When the code generation is completed, any errors encountered are displayed.

The Save Settings button in the bottom left corner of the screen allows you to save

the details of the generator form without running the generation process.

mv.NET Solution Objects Developer Guide - Using Generated Code

Page 75

Using Generated Code

This chapter describes how you can use the code that Solution Objects generates

to create one or more access layer assemblies.

Overview

Once you have generated your code modules, the final step in producing an access

layer that can be distributed to your community of application developers is to,

using Visual Studio, create an assembly incorporating the generated code.

Note, in the following sections reference is made to the "Program Files (x86)"

folder, if you are running on a 32-bit system this will be "Program Files".

Steps to Produce an Access Layer Assembly

The easiest way to create the Visual Studio project(s) to host your BAL code is to

let the code generator do it for you (see previous chapter). Alternatively, you can

do it all manually as described below:

1. Launch Visual Studio.

2. Create a new Class Library project, selecting the language that matches

the one you selected when you generated the code within the Data

Manager.

3. Go into the Project Properties window and set the required assembly

name for your project. For VB.NET projects also clear out the

Root/Default namespace field in this form.

mv.NET Solution Objects Developer Guide - Using Generated Code

Page 76

4. Add a reference to the required assemblies.

For BALs targeting a non-Silverlight runtime environment, add a

reference to the following 2 assemblies:

Program Files (x86)\BlueFinity\mv.NET\Version4.0\bin\Public Assemblies\

BlueFinity.mvNET.SolutionObjects.dll

Program Files (x86)\BlueFinity\mv.NET\Version4.0\bin\

BlueFinity.mvNET.CoreObjectsDAL.dll

For BALs targeting a Silverlight runtime environment, add a reference to

all assemblies in the following folder:

Program Files (x86)\BlueFinity\mv.NET\Version4.0\bin\Silverlight

Additionally, for Silverlight projects, you will need to add a reference to

the following assembly:

Program Files (x86)\Microsoft

SDKs\Silverlight\v4.0\Libraries\Client\ System.Windows.Data.dll

5. Right-click the project node within the Visual Studio Solution Explorer

window and select the "Add -> Existing Item" menu option. Browse to

the location of your generated code modules and add them to your

project.

6. Select the project build option to create your assembly.

If your DAL is to be contained in a separate assembly to that of your BAL, you will

need to repeat the above process for your BAL, except that instead of referencing

the BlueFinity.mvNET.CoreObjectsDAL.dll assembly you will need to reference

your DAL assembly.

mv.NET Solution Objects Developer Guide - Utilizing a Business Access Layer

Page 77

Utilizing a Business

Access Layer

This chapter describes how you can use the business access layer assembly that

you have created using the steps in the previous chapter. It also contains a

summary of the properties and methods that are automatically included on the

interface of a BAC in addition the properties and methods defined in the entity

model definition.

Overview

Once you have created your business access layer assembly all that you need to do

is add a reference to it within your Visual Studio application project(s).

Steps for Utilizing a Business Access Layer

Assembly

1. Launch Visual Studio for your application project.

2. Add a reference to the following assembly:

Program Files (x86)\BlueFinity\mv.NET\Version4.0\bin\Public Assemblies\

BlueFinity.mvNET.SolutionObjects.dll

3. Add a reference to the BAL assembly that you have created in Visual

Studio as per the previous chapter.

mv.NET Solution Objects Developer Guide - Utilizing a Business Access Layer

Page 78

4. Optionally, you may add Imports/using statements at the start of your

application code modules for the above assemblies to shortcut the use of

namespaces.

BAC Standard Properties and Methods

The code generator will automatically include a number of standard properties and

methods on the interface of the singular class of each BAC. These properties and

methods are summarized below and are covered in greater depth within the

following chapters of this guide.

Name Type Description

Create Method Allows new instances of the class to be created within the

underlying data store. See associated chapter below.

Delete Method Allows instances of the class to be deleted from the

underlying data store. See associated chapter below.

Exists Method Allows you to test whether an instance already exists

within the underlying data store.

PrimaryKey Property A string version of the Item ID/Primary key of the

instance.

SelectAll Method Selects all instances of the class within the underlying

data store. This method is only included if the "Include

SelectAll" checkbox within the Data Access Class

maintenance window is ticked.

SelectGeneric Method Selects a range of instances of the class within the

underlying data store based on database-specific

selection and sort criteria. This method is only included

if the "Include SelectGeneric" checkbox within the Data

Access Class maintenance window is ticked.

StaticData Property An EntityStaticDataBAL instance holding a range of static

data values for the class. See below for further details.

Update Method Allows property value amendments to be persisted within

the underlying data store. See associated chapter below.

<web data

binding

methods>

Methods Please refer to the WebForm Data Binding Support

chapter for details on these methods.

mv.NET Solution Objects Developer Guide - Utilizing a Business Access Layer

Page 79

Class Static Data

The code generated for a BAC will automatically include a property called

"StaticData" on the singular class. The value returned by this property is an

instance of the EntityStaticDataBAL class which is a specialized class designed to

hold several pieces of class-level data.

The values held by the EntityStaticDataBAL instance are set at class initialization

time and are not, generally speaking, intended for programmer use. However, in

certain circumstances it may be desirable to amend the values held in some of the

properties of this EntityStaticDataBAL instance. Below is a summary of the

properties of the EntityStaticDataBAL class which are intended for end-

programmer usage (if required).

Property Name Description

PhysicalProperties The names (space separated list) of the physical

properties to be retrieved in the initial data

retrieval action.

CalculatedProperties The names (space separated list) of the non-

physical properties to be retrieved in the initial

data retrieval action.

AutoIDPreEmptiveSize The number of auto generated IDs to be pre-

emptively retrieved when a new ID is requested.

This value allows auto ID generation to be

optimized when an auto ID value is required at the

time of creating a new instance (as opposed to

when a new instance is saved to the data store). By

retrieving a set of auto IDs, the number of

database round-trips can be reduced when a

number of instances are going to be created. The

downside of this is that some of the pre-emptively

retrieved IDs by never be used.

AutoIDPreEmptiveSizeReset Turns off pre-emptive auto ID retrieval.

StaticDataDAL The associated EntityStaticDataDAL instance. See

below.

The StaticDataDAL property holds an instance of the associated

EntityStaticDataDAL class. This class holds various pieces of class-level data for

the underlying DAC associated with the BAC. As with the EntityStaticDataBAL

instance held at BAC level, the EntityStaticDataDAL instance held at DAC level is

mv.NET Solution Objects Developer Guide - Utilizing a Business Access Layer

Page 80

not intended for programmer use. However, in certain circumstances it may be

desirable to amend the values held in some of the properties of this

EntityStaticDataDAL instance. Below is a summary of the properties of the

EntityStaticDataDAL class which are intended for end-programmer usage (if

required).

Property Name Description

DataFileName The name of the database file holding the persisted data of

the class.

SchemaFileName The name of the database file holding the schema associated

with the class.

If may be necessary to maintain the values of the above 2 properties if a single

entity definition is being used to access multiple database files all of the same

structure.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 81

Integrating Custom Code

This chapter describes how you can integrate the program code within a custom

code module with the code generated by Solution Objects. It also covers how to

override the default error messages produced by Solution Objects.

Overview

The code generated by Solution Objects consists of class declaration and

implementation code. All these classes are declared as partial classes, the intention

being that you are then able to extend the features of any class by creating code in a

separate file. The .NET compiler will then join these 2 file modules (the Solution

Objects generated code and your custom code) together to create a single

consolidated class definition.

The Custom Code File

The Solution Objects code generator produces 2 code modules per DAL/BAL. The

first file (referred to as the "generated code file") should be regarded as source code

which should not be amended by you the developer under any circumstances – this

is because the code generator removes and regenerates the entire contents of this

file each time the code generation process is performed.

The second generated file (referred to as the "custom code file") is deemed to be

"owned" by you. The only times that the code generator will alter the contents of

this file are:

1. The first time code is generated for an entity model.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 82

2. When the code generator detects that a class declaration is not present

within the custom code file. In which case, it will add a new class

declaration "stub" to the custom code file.

The purpose of the custom code file is to provide a place where you are able to add

members to the interface of a class and to intercept the occurrence of the following

events:

1. A property value Get and Set

2. The invocation of a CRUD action (before and after)

The interception of property value Get and Set is available for both the DAL and BAL.

The interception of CRUD actions is only available for the DAL.

Intercepting Property Get/Set in the DAL

Within the DAL custom code module, each class stub generated by Solution Objects

contains a PropertyGet and a PropertySet method.

The PropertyGet method allows you to link your own code into the property Get

process for one or more properties in the class. The PropertyGet method stub

generated by Solution Objects is shown below:

Friend Function PropertyGet(ByVal PropertyEnum As String, ByVal PropertyValue

As Object) As Object

 Select Case PropertyEnum

 End Select

 Return PropertyValue

End Function

The Select clause within the body of the function allows you to perform a specific

block of code for each property within the class. To allow you to identify properties

more easily here, the code generator creates a series of static variables within a

namespace called {classname}Property, e.g. OrganizationProperty. Below is a

snippet of code which illustrates the use of this (the assumption here is that the

Organization class has a property called "Name":

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 83

Select Case PropertyEnum

 Case OrganizationProperty.Name

 Return PropertyValue.Substring(0, 1).ToUpper &

 PropertyValue.Substring(1).ToLower

End Select

The above code forces the value returned by the Name property to follow a

predefined upper/lower casing specification.

The DAC maintenance form allows you to define whether the PropertyGet function is

called before and/or after the property value is extracted from the underlying

datasource record (see section on defining property values more details).

If it is defined that the PropertyGet method is to be called before the base record

data is extracted (i.e. the "DAL custom code Get Pre-check" checkbox is ticked

within the DAC maintenance form), the PropertyValue argument will be set to

null/nothing before a call into the PropertyGet method is performed. If you return

anything other than a null/nothing value, that value will be used as the property

value and no data will be extracted out of the base record for that property.

If it is defined that the PropertyGet method is to be called after the base record data

is extracted (i.e. the "Get Post-check" checkbox is ticked within the DAC

maintenance form), the PropertyValue argument will be set to the data extracted

from the base record. Again, if you return anything other than a null/nothing value,

that value will be used as the property value.

The PropertySet method allows you to link your own code into the property Set

process for one or more properties in the class. The PropertySet method stub

generated by Solution Objects is shown below:

Friend Function PropertySet(ByVal PropertyEnum As String, ByRef PropertyValue

As Object) As String

 ' Set return value to a non-empty string to indicate an error

 Select Case PropertyEnum

 End Select

Return ""

End Function

Note, the PropertySet method is always called as part of the property value setting

process. The PropertyValue argument is set to the candidate value for the property.

You may adjust this as necessary. If you need to block the value from being set into

the base record, you need to throw an exception from within your custom code.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 84

Intercepting CRUD actions in the DAL

Within the DAL custom code module, each class stub generated by Solution Objects

contains the following 2 methods:

BeforeCRUD

AfterCRUD

These methods are designed to be used when you need to invoke custom logic

before and/or after a specific CRUD operation.

BeforeCRUD Code Stub

The code stub inserted here (shown in VB for entity type "Contact") is as follows:

Friend Shared Function BeforeCRUD(ByVal CRUDType As CRUDType, ByVal Instance

 As Contact) As String

 ' Set return value to a non-empty string to indicate an error

 Dim returnValue As String = ""

 Select Case CRUDType

 Case CRUDType.Create

 Case CRUDType.Read

 Case CRUDType.Update

 Case CRUDType.Delete

 Case CRUDType.Select

 End Select

 Return returnValue

End Function

If you wish to abort the CRUD action the return value should be set to a non-empty

string. Note, the Solution Objects framework will not raise an exception if a string

value is returned - you must do this with your custom code if you require this to be

done.

The second argument of the BeforeCRUD method is only supplied during the Update

or Select actions – for all other actions it is set to null.

For Update actions it contains the instance of the entity that is about to be updated.

For Select actions it contains an empty instance of the relevant DAC and is provided

purely to allow programmatic access to the arguments that have been supplied in

the invocation of the selection method. Access to selection method arguments is via

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 85

the DAC's SelectionMethodCallArgs property – this property returns an instance of

the SelectionMethodCallArgs class which contains the following properties:

SelectionMethodName

ArgumentValues

The SelectionMethodName property holds the name of the selection method being

invoked. The ArgumentValues property holds a Dictionary (Of String, Object)

collection variable which gives you access to the selection method arguments (based

on argument name. Any changes to the content of this Dictionary collection will be

picked up and used in the ensuing selection action.

For example, the code below forces the "VersionID" argument of the

"SelectByVersion" selection method to a value of "3":

Case CRUDType.Select

 If Instance.SelectionMethodCallArgs.SelectionMethodName =

 "SelectByVersion" Then

 Instance.SelectionMethodCallArgs.ArgumentValues("VersionID") = 3

 End If

AfterCRUD Code Stub

The code stub inserted here (shown in VB for entity type "Contact") is as follows:

Friend Shared Sub AfterCRUD(ByVal CRUDType As CRUDType, ByVal Instance As

 Contact)

 Select Case CRUDType

 Case CRUDType.Create

 Case CRUDType.Read

 Case CRUDType.Update

 Case CRUDType.Delete

 End Select

End Sub

The second argument of the AfterCRUD method is only supplied during the Read

action and contains the instance of the entity that has just been read.

Note, the AfterCRUD method is not invoked for the Select CRUD type.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 86

Overriding Error Messages

The code generated by solution objects (along with the support assemblies used at

run-time) will generate exceptions under certain error conditions. By default, the

description of these exceptions will be in English, but you are able to replace these

default descriptions with your own language or context dependent versions.

In order to do this, you will need to perform the following actions:

1. At the start of your application you will need to assign a language code (of your

choosing) to the "LiteralStrings.LanguageCode" variable. The LiteralStrings class

will be within your DAL namespace, for example:

BlueFinity.SOP.DAL.LiteralStrings.LanguageCode = "ESN"

2. Add your custom error descriptions into the SO DAL code template. The DAL

code templates are held in the following folder:

C:\Program Files\BlueFinity\mv.NET\Version4.0\Code Templates\DAL

For VB, the code template file is called "DAL VB.txt", for C# the code template

file is called "DAL CS.txt"

Within the template file search for the line containing the string "{Insert custom

literal strings here}". At this point you will need to add overrides for all of the SO

messages as required. An example is given below:

VB

Public Overrides ReadOnly Property INVALID_Int32_VALUE As String
 Get
 Select Case LiteralStrings.LanguageCode
 Case "ESN"
 Return "El incorrecto valor de integer número entró"
 Case Else
 Return MyBase.INVALID_Int32_VALUE
 End Select
 End Get
End Property

C#

public override string INVALID_Int32_VALUE

{

 get

 {

 switch (LiteralStrings.LanguageCode)

 {

 case "ESN":

 return "El incorrecto valor de integer número entró";

 default:

 return base.INVALID_Int32_VALUE;

 }

 }

}

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 87

Solution Objects uses the following error message literal strings:

Literal String ID Default (English) Value

COLLECTIVE_INSTANCE_NOT_FOUND Item not found in the collection

COLLECTIVE_ASSIGN_INVALID Cannot assign directly into collective instance

CANNOT_ASSIGN_UNKNOWN_ENUM 'UnknownValue' enumeration value cannot be assigned

CONNECTION_OPEN_FAILED Open of database connection failed

DATABASE_ERROR Database error

DATASOURCE_NOT_FOUND Datasource not found within repository

DATA_IS_INVALID data contains invalid property values

EMPTY_VALUE_NOTALLOWED Empty/null value cannot be assigned to this property

FK_DATASOURCE_NOT_DEFINED Foreign key datasource not defined

FK_DATASOURCE_NOT_FOUND Foreign datasource file not found

FK_NOT_FOUND Foreign datasource value not found in associated

datasource

INVALID_Boolean_VALUE Invalid true/false value entered

INVALID_DATE Invalid date value

INVALID_DateTime_VALUE Invalid date/time value entered

INVALID_Double_VALUE Invalid numeric value entered

INVALID_Decimal_VALUE Invalid numeric value entered

INVALID_KEY_LIST Invalid primary key list supplied

INVALID_Int32_VALUE Invalid integer value entered

INVALID_Int64_VALUE Invalid integer value entered

INVALID_PROPERTY_NAME Property name not known

ITEM_MODIFIED_BY_ANOTHER_USER The item has been modified by another user

ITEM_LOCKED_BY_ANOTHER_USER The item is currently locked by another user

ITEM_ALREADY_EXISTS The item already exists

MVORDINAL_NOT_PRESENT Mv ordinal position property not present in collection

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 88

PESSIMISTIC_LOCKING_NOT_ALLOWED Pessimistic locking is allowed on nested entities

PK_CANNOT_BE_BLANK Primary key value cannot be blank

PK_CANNOT_BE_ALTERED Existing primary key value cannot be altered

PK_USES_AUTOID Primary key value is to be assigned via auto ID

generation

RECORD_NOT_FOUND Record not found

SVORDINAL_NOT_PRESENT Sv ordinal position property not present in collection

TRANSACTION_ALREADY_IN_PROGRESS Unable to start a new transaction - one is already in

progress

TRANSACTION_COMMIT_FAILED transaction(s) failed to commit

TRANSACTION_NOT_IN_PROGRESS "A transaction is not currently in progress"

UPDATE_ERROR Update error(s) encountered

USE_CREATE_AND_INSERT Use Create and Insert methods for non-nested data

insertion

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 89

Reading/Selecting Data

This chapter describes how you can use your generated Business Access Layer to

read and select data from the underlying datasource.

Overview

The first thing that you'll probably want to do with your BAL is to use it to read

information from your database and have this data presented in the form of

instances of the various classes within your BAL. To do this, you will need to use

one or more of the properties and methods created as part of the code generation

phase.

The following sections of this chapter describe the various ways in which you can

do this.

Initializing Data Access

All the static methods created by the code generator require a "DataRepository"

instance to be passed into each method in order for Solution Objects to know

where the underlying application datasource can be found.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 90

A "DataRepository" is an instance of the DataRepository class within the Solution

Objects runtime assembly. The following code snippet illustrates how a

DataRepository instance can be created:

VB:

Dim repository As BlueFinity.mvNET.SolutionObjects.DataRepository =

CompanyABC.OrderProcessing.BAL.FullAccess.Repository.Initialize()

C#:

BlueFinity.mvNET.SolutionObjects.DataRepository repository =

CompanyABC.OrderProcessing.BAL.FullAccess.Repository.Initialize();

As can be seen above, each BAL contains a "Repository" class. This class has a

static method named "Initialize" which is a factory method for creating

DataRepository instances for use with that specific BAL.

The Initialize method overload used in the above code will use the default

datasource connection string. This is the connection string defined within the

entity model. The Initialize method also has an overload which allows you to

supply the connection string at run time. The format of the connection string will

depend on the type of underlying datasource. For a MultiValue datasource, the

format of the connection string is as follows:

Server={LoginProfileName}

Where {LoginProfileName} is the required login profile as defined within the

mv.NET Data Manager utility.

e.g.

VB:

Dim SOPdata As BlueFinity.mvNET.SolutionObjects.DataRepository =

CompanyABC.OrderProcessing.BAL.FullAccess.Repository.Initialize("Server=SOP")

C#:

BlueFinity.mvNET.SolutionObjects.DataRepository SOPdata =

CompanyABC.OrderProcessing.BAL.FullAccess.Repository.Initialize("Server=SOP");

There are some optional extra details that can be supplied within the connection

string, each of which is delimited by a pipe ("|") character:

ApplicationID={ApplicationID}|ClientGUID={ClientGUID}|User={UserID}|Password={Passwo

rd}|SessionManagerAddress={SMAddress}

Where:

{ApplicationID} = a description of the application using the repository.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 91

{ClientGUID} = A unique string identifying a specific instance of a client. This

needs to be supplied if you wish to maintain collective instances of entities across

DataRepository instances. For example, in web applications you would typically

set this value on first use of a DataRepository within a web page and then persist

its value in ViewState or some other persistence mechanism for it to be available

for use in subsequent code-behind executions. The GUID value is used to name

datasource hosted resources associated with collective instances.

{UserID} = A string identifying the user name to be used in the datasource

connection/authentication process

{Password} = The password to be used in the datasource

connection/authentication process

{SMAddress} = The address of the mv.NET Session Manager. This is only relevant

for MultiValue datasources

Reading Individual Entity Instances

Each singular BAC has a static "Read" method which allows you to instantiate

individual entity instances using data from the underlying datasource.

e.g.

VB:

Dim myOrg As Organization = Organization.Read(SOPdata, txtOrg.Text)

C#:

Organization myOrg = Organization.Read(SOPdata, txtOrg.Text);

The Read method has 3 overloads as indicated in the grid below (the example

above uses overload#1):

Argument Used in

Overload #

Description

Repository 1,2 & 3 The DataRepository instance to be used

PrimaryKey 1,2 & 3 The primary key of the required datasource instance

LockStyle 2 & 3 The locking style (within the underlying datasource)

to be used. See below for further details on this.

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 92

CreateIfNew 3 Indicates whether a new instance is to be created if

the supplied primary key does not exist

The LockStyle argument, if supplied, indicates which method of locking within the

underlying datasource level is to be used by the read operation. It may be set to

one of the following enumeration values:

Enum Name Description

None No record locking is to be used.

Optimistic Optimistic record locking is to be used. This

setting will always allow the read operation to be

performed but will check for update contention on

update commit.

Pessimistic Pessimistic record locking is to be used. This

setting will only allow the read operation to be

performed if no other user currently has a

pessimistic lock held on the same underlying

datasource record. The pessimistic lock will be

released on update commit (unless lock retention is

specified - see next chapter).

PessimisticFallback Pessimistic record locking is to be used. If another

user currently holds a pessimistic lock on the same

underlying datasource record, the read will still be

performed but no record locking will be applied.

You may interrogate the "IsLocked" property of the

entity instance to find out whether a pessimistic

lock has been successfully obtained.

PessimisticOnModify Pessimistic record locking will be used on first

property value amendment. A non-record locking

read will be used initially. If another user currently

holds a pessimistic lock on the same underlying

datasource record at the time when the pessimistic

lock is attempted, an exception will be raised to the

end application. The pessimistic lock (if obtained)

will be released on update commit (unless lock

retention is specified - see next chapter).

PessimisticOnModifyFallback This is a combination of PessimisticFallback and

PessimisticOnModify in that the lock will be applied

on first property value amendment but if that fails,

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 93

no exception will be raised.

Selecting Multiple Entity Instances

For each self (static) selection method identified as being required on the interface

of a BAC there will be a corresponding static method on the singular class of the

BAC. These static methods will each have a number of overloads providing you

with a certain degree of control over how the selection is performed. The

following grid summarizes each argument that may appear on these overloads:

Argument Description

{specific arguments} Selection method specific arguments. There may be zero

or more of these for each selection method.

Repository The DataRepository instance to be used

PrimaryKey The primary key of the required datasource instance

LockStyle The locking style to be used on each selected datasource

record. Values of None, Optimistic and Pessimistic are

allowed here - note, any of the Pessimistic locking style

variants will be treated as simply Pessimistic. See above

for more details. The default value here is None.

SelectionProfile This argument can be set to one of two possible

enumeration values:

FetchOnDemandAndServerPersistanceOff

FetchOnDemandAndServerPersistanceOn

If the "Off" setting is chosen, all selection data will be

retrieved in a single round-trip to the underlying

datasource. No state persistence information will be

created on the datasource and no paging will be

supported.

If the "On" setting is specified, underlying datasource data

will be retrieved on demand (this is used by the in-built

paging mechanism) and state information will be created

within the underlying datasource. This state information

allows collective instances to be recreated without re-

executing selection commands on the underlying

datasource. The number of records retrieved when the

on-demand mechanism is activated is controlled by the

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 94

page size specified in the PageSize argument (see below).

The default setting for this argument is controlled by the

"DefaultSelectionProfile" property of the DataRepository

instance. This property itself defaults to a value of

FetchOnDemandAndServerPersistanceOn.

AdditionalProperties A list of property names (space separated) indicating

additional properties (i.e. additional to those specified in

the BAC definition) to be retrieved in the initial data

retrieval phase. This allows an end-application to

optimize datasource retrieval based on the data needs of a

specific section of code within the application.

PageRowOffset The ordinal index (zero-based) of the row within the

overall list of selected records to be used as the first row

within the returned collection.

PageSize The number of rows to be extracted (starting at the

PageRowOffset row) from the overall list of selected

records to form the returned collection.

SortOverride The property to be used to sort the returned collection.

This will override the sort specification of the underlying

selection method.

Pre-emptive Data Selection

All collective classes support a mechanism to allow you to retrieve the data

associated with a singular object reference property for all instances in the

collection in a single data source roundtrip. This is perhaps best explained using

an example.

Let us say that we have an Organization class. This Organization class has a string

property called MainContactID which holds the primary key of a Contact class

instance. The Organization class also has a property called MainContact which is

an object reference property, that is, it holds an instance of a Contact object – the

instance indicated by the content of the MainContactID property.

If we use one of the selection methods of the Organization class to obtain an

Organizations collective instance, the individual Organization instances within that

collection will not yet hold an object reference in the MainContact property – i.e. it

will be null/Nothing. If we were to process each Organization instance in a loop,

referencing the MainContact property within the loop, we would trigger a

mv.NET Solution Objects Developer Guide - Validating Entity Definitions

Page 95

roundtrip to the data source for each loop iteration. This obviously works, but it is

not particularly efficient – especially if we have many entries in the collection.

Therefore, all collective classes support a method called LoadEntityPropertyData.

This method allows you to specify the name of an object reference property (an

enumeration allowing easy identification of a property is automatically created by

the code generator) and will result in the data for all instances of the related class

referenced by the entries in the collection being retrieved in a single data source

roundtrip.

mv.NET Solution Objects Developer Guide - Saving Data Changes

Page 96

Saving Data Changes

This chapter describes how you are able to save the changes that you make to an

entity instance's property values to the underlying datasource.

Overview

Each (singular) Business Access Class (BAC) has an Update method. This method

has a number of overloads allowing you to control the precise behavior of data

updating.

There is also an instance-based Update method on the collective class of each BAC

that can be used to save all modified entries in a collection of BAC instances.

Each BAC also has static (class-level) Update method that is included as part of

Solution Objects' Web data binding support. Please refer to the WebForm Data

Binding Support chapter for further details.

Singular Instance Update Method

If you hold a singular BAC instance within your application, you may save its

current data content by using its "Update" instance method. This method has the

following overloads:

Update()

Update(ByVal CascadeUpdate As Boolean, ByVal RetainLock As Boolean)

Update(ByVal OrgID As String)

The first overload simply calls the second overload passing in argument values of

True and False respectively.

mv.NET Solution Objects Developer Guide - Saving Data Changes

Page 97

The second overload saves the current data content of the BAC if any of its

property data values have been modified. If the CascadeUpdate argument is set to

True, the update process will scan the properties of the BAC instance for the

presence of any singular or collective BAC instances and will invoke the Update

instance method for any that are found. In this way, only a single invocation of

the Update method (of the top-level BAC) is required to save a logical "tree" of

related BAC instances. If the RetainLock argument is set to False and pessimistic

locking has been used, the pessimistic lock with be released, otherwise it will be

retained.

The third overload allows the data to be saved under a different Item ID (primary

key).

Collective Instance Update Method

If you hold a collective BAC instance within your application, you may save the

current data content of all modified BAC instances contained within the collection

by using its Update instance method. This method has the following signature:

Sub Update(ByVal CascadeUpdates As Boolean)

This method scans the collection for BAC instances holding unsaved data

modifications and for any found invokes their individual Update method.

If the CascadeUpdates argument is set to True, the update process will scan the

properties of each BAC instance within the collection for the presence of any

singular or collective BAC instances and will invoke the Update instance method

for any that are found. In this way, only a single invocation of the Update method

(of the top-level BAC collection) is required to save a logical "tree" of related BAC

instances

mv.NET Solution Objects Developer Guide - Deleting Data

Page 98

Deleting Data

This chapter describes how you are able to delete entity instance's from the

underlying data store.

Overview

Each (singular) Business Access Class (BAC) has a static (class-level) Delete

method. This allows you delete individual records from the underlying data store.

There is also an instance-based Delete method on both the singular and collective

class of each BAC which can be used to delete one or more BAC instances.

Additionally, each (singular) BAC also has a static (class-level) Delete method that

is included as part of Solution Objects' Web data binding support. Please refer to

the WebForm Data Binding Support chapter for further details.

Static Delete Method

Each BAC has a "Delete" static method on the singular class. This method allows

you to specify the item ID (primary key) of the record in the underlying data store

to be deleted.

mv.NET Solution Objects Developer Guide - Deleting Data

Page 99

Instance Delete Method

Each BAC has a "Delete" instance method on the singular class. This method

allows you to delete the instance of the class in the underlying data store. The

instance Delete method has an overload which allows you to control 2 aspects of

deletion:

Public Sub Delete(ByVal CascadeDelete As Boolean, ByVal RetainLock As Boolean)

The "CascadeDelete" argument allows you to indicate whether cascaded delete

processing should be performed. Cascaded delete processing is a mechanism

whereby all members of the interface of a class which are flagged as supporting

cascaded deletes will be deleted in addition the base instance.

For example, if we take the Organization class from the demo SOP entity model it

has a property which holds the primary key of the main contact person for that

organization. There is also a property which supplies the Contact class object

instance representing that primary key value. The Contact class property can be

flagged (via the Data Access Class Maintenance window) as supporting deleted

cascading. Therefore, when an Organization instance is deleted, and the Contact

class property is flagged as supporting deleted cascading, the main contact record

will also be deleted from the underlying data store.

The "RetainLock" argument of the Delete instance method allows you to indicate

whether a pessimistic lock within the underlying data store on the item being

deleted is to be retained.

mv.NET Solution Objects Developer Guide - Creating New Instances

Page 100

Creating New Instances

This chapter describes how you are able to create new entity instance's in the

underlying data store.

Overview

Each (singular) Business Access Class supports several ways to create new

instances of the associated entity. The method you use depends on a number of

factors:

• Does the underlying datasource file use auto ID generation?

• Do you know the primary key of the new instance at the time of initial

creation?

Static Create Method

Each BAC has a "Create" static method on the singular class. This method creates

a new instance of the relevant class in memory only. Only when the Update

method of the new instance is used will this instance be stored in the underlying

data store.

The Create method has a call signature which will vary depending on whether the

underlying datasource file uses auto ID generation.

If the underlying datasource file uses auto ID generation, the Create method will

have the following call signature:

Public Shared Function Create(ByVal Repository As DataRepository, ByVal

 WithImmediateAutoID As Boolean, ByVal LockStyle As LockingStyle) As Contact

mv.NET Solution Objects Developer Guide - Creating New Instances

Page 101

The "WithImmediateAutoID" argument allows you to control whether the auto ID

generation occurs at the time when the Create method is invoked (i.e.

WithImmediateAutoID = True) or when the Update method of the new instance is

invoked.

The "LockStyle" argument allows you to indicate the type of lock that will be

applied immediately to the new instance. If the WithImmediateAutoID argument is

set to False, the LockStyle argument will be ignored.

If the underlying datasource file does not use auto ID generation, the Create

method will have the following call signature:

Public Shared Function Create(ByVal RepositorySOP As DataRepository, ByVal ID As

String, ByVal LockStyle As LockingStyle) As Product

The ID argument allows you to specify the item ID (primary key) of the new

instance. If this is not known at create time or needs to be programmatically

generated only at Update time, it should be passed in as an empty string. In fact,

if this is the case, there is a second overload to the Create method which does not

include the "ID" argument.

If you do not supply an item ID at create time, you will need to assign it a value

before the Update method is invoked, otherwise an exception will be raised by the

Update method.

Singular Class Constructor

An alternative way to create new instances is to use the constructor of the relevant

singular class. Each singular class constructor has an identical set of call

signatures to that of the "Create" static method of the same class. In fact, if you

look at the generated code you will see that the "Create" static method simply

invokes the constructor of the same class to establish a new instance.

mv.NET Solution Objects Developer Guide - WinForm Data Binding Support

Page 102

WinForm Data Binding

Support

This chapter describes the support for WinForm (rich-client) data binding that is

automatically built into each Business Access Class generated using Solution

Objects.

Overview

The data binding mechanism supported by .NET WinForm applications allows for

data binding to be tied into the data represented by a custom class library. For it

to do this, the classes contained within such a library must implement various

interfaces requirements. The BACs generated by Solution Objects automatically

contain such implementations, which means that they may be used freely with all

aspects of WinForm data binding.

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 103

WebForm Data Binding

Support

This chapter describes the support for WebForm data binding that is automatically

built into each Business Access Class generated using Solution Objects.

Overview

The data binding mechanism supported by ASP.NET WebForm applications allows

for data binding to be tied into the data represented by a custom class library. For

it to do this, the classes contained within such a library must implement various

interface requirements. The BACs generated by Solution Objects automatically

contain such implementations, which means that they may be used freely with all

aspects of WebForm data binding.

WebForm Data Binding Principles

It is beyond the scope of this guide to give a detailed description of how WebForm

data binding works and how a developer may link in and utilize its features.

However, to explain the support for WebForm data binding that is built into each

BAC, below is a brief explanation of the principles of WebForm data binding to

custom class libraries.

Within the "Data" group of its Toolbox window, Visual Studio .NET supplies a

component called "ObjectDataSource". If you drag and drop this component onto

a WebForm, you can select a library (and a class within that library) within your

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 104

current solution as being a source of data. This data source may then be used to

provide data for the WebForm data binding mechanism.

Each ObjectDataSource component uses reflection to inspect the interface of the

selected class and allows you to identify the methods that are to be used for data

selecting, updating, inserting and deleting.

Once an ObjectDataSource has been created, controls dropped onto the surface of

the WebForm can be "bound" to properties of the underlying class using Visual

Studio's Properties window.

ObjectDataSource Property Settings

The Visual Studio WebForm ObjectDataSource control has a number of properties

that allow you to control its behavior. The web data binding support built into

each Solution Objects BAC works best when various ObjectDataSource properties

are set as indicated in the table below:

Property Name Recommended Setting Description

ConflictDetection CompareAllValues This forces optimistic locking

to be used when updating

existing data items.

EnablePaging True Allows the ObjectDataSource

to handle the paging of data

on the server.

OldValuesParameter

FormatString

original_{0} Identifies the parameter

name within the

UpdateMethod signature

used to data updating. All

BAC web update methods

have this parameter.

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 105

SelectCountMethod SelectMethodNameCount All BAC classes have a

method that has the same

name as the root selection

method with the word

"Count" at the end. This

Count method returns the

total number of items

selected and is used by the

ObjectDataSource paging

mechanism.

SortParameterName sortedBy Identifies the parameter

name within the

SelectMethod signature used

to control sorting. All BAC

web select methods have this

parameter.

The WebDataAssist Control

Solution Objects provides a component that is designed to ease the use of the

ObjectDataSource control. It is called the "WebDataAssist" control.

The WebDataAssist control provides the following features which are configurable

using its design-time properties:

Property Name Description

ClientName Allows the client ID (as displayed in the mv.NET Session

Monitor Utility) to be specified.

ConnectionString Allows the repository connection string to be specified.

ObjectDataSources The list of ObjectDataSource names to assist. If left

blank, all ObjectDataSources on the web page are

serviced by this WebDataAssist control.

RetainDataListState If set to True, maintains the state of the

ObjectDataSource's currently selected collection of

entities across code-behind execution life-cycles. See

below for further details.

The WebDataAssist control also provides the following features which are available

as run-time properties/methods

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 106

Member Name Type Description

DatasourceStateInfo Property Returns the data required to reinstate a

previously selected collective instance

associated with a specified ObjectDataSource.

The WebDataAssist control is located within the following assembly:

BlueFinity.mvNET.WebAssist.dll

If it is not visible/present within Visual Studio's " mv.NET WebForm " Toolbox

group, you may add it using the "Choose Items" right-click context menu option

within that Toolbox group.

The RetainDataListState property allows you to request that the WebDataAssist is

to automatically persist entity collections (as initially assembled by the

ObjectDataSource) across code-behind life-cycles. This has the following

benefits:

- Once the original selection list has been assembled, it avoids the need to

perform the selection repeatedly each time the code-behind executes. The

WebDataAssist control automatically stores the selection list header

information in ViewState and uses this to automatically restore/persist the

selection list at the start/end of each code-behind execution.

- The persisting of selection lists also includes any data modifications to any

collection entries that have not been permanently persisted to the underlying

datasource.

- This selection persisting mechanism is compatible with the standard

ObjectDataSource paging mechanism.

Web Data Binding Selection Methods

Each static selection method of a BAC is manifested a number of times (as

different overloads) on the interface of the singular class. One of these overloads

(which is placed within the "Web Data Binding Support" region of the generated

code) is decorated with the following attribute:

System.ComponentModel.DataObjectMethod(System.ComponentModel.DataObjectMethodType.Se

lect

This attribute indicates to the ObjectDataSource control that this method is a

candidate for its "SelectMethod" property. Solution Objects ensures that the

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 107

signature of this overload is compatible with the requirements of the

ObjectDataSource data binding mechanism.

Web Data Binding Maintenance Methods

Each BAC generated by Solution Objects has the following data maintenance static

methods on the singular class:

Public Overloads Shared Function Update(ByVal ClassName As ClassName) As Int32

Public Overloads Shared Function Update(ByVal ClassName As ClassName, ByVal

original_ClassName As ClassName) As Int32

Public Shared Function Insert(ByVal ClassName As ClassName) As PrimaryKeyDataType

Public Overloads Shared Function Delete(ByVal ClassName As ClassName) As Int32

Where ClassName represents the relevant BAC singular name and

PrimaryKeyDataType represents the data type of the item ID property of the class.

Each of the above methods is decorated with the appropriate DataObjectMethod

attribute:

System.ComponentModel.DataObjectMethod(System.ComponentModel.DataObjectMethodType.Up

date

System.ComponentModel.DataObjectMethod(System.ComponentModel.DataObjectMethodType.In

sert

System.ComponentModel.DataObjectMethod(System.ComponentModel.DataObjectMethodType.De

lete

These attributes indicate to the ObjectDataSource control that these methods are

candidates for its "UpdateMethod", "InsertMethod" and "DeleteMethod" properties.

Accessing Datasource Data at Run-time

The WebDataAssist control allows you to access the collective instance associated

with an ObjectDataSource at run-time by providing the data required to restore

the selection from its persisted state.

Below is some example code which shows the data from the currently selected row

within a GridView control being accessed to populate 3 TextBox controls on a

webform:

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 108

Partial Class _Default

 Inherits System.Web.UI.Page

 Private SOPData As BlueFinity.mvNET.SolutionObjects.DataRepository =

 Repository.Initialize()

 Protected Sub GridView1_DataBound(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles GridView1.DataBound

 PopulateControls(RestoreList(0))

 GridView1.SelectedIndex = 0

 End Sub

 Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, ByVal e As

 System.EventArgs) Handles GridView1.SelectedIndexChanged

 PopulateControls(RestoreList(GridView1.SelectedIndex))

 End Sub

 Private Function RestoreList() As Organizations

 Dim Organizations As Organizations

 If WebDataAssist1.DataSource(odsOrganization) Is Nothing Then

 Organizations = Organizations.RestoreFromState(SOPData,

 WebDataAssist1.DataSourceStateInfo(odsOrganization), GridView1.PageIndex *

 GridView1.PageSize, GridView1.PageSize)

 WebDataAssist1.DataSourceRestore(odsOrganization, Organizations)

 Else

 Organizations = CType(WebDataAssist1.DataSource(odsOrganization), Organizations)

 End If

 Return Organizations

 End Function

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 109

 Private Sub PopulateControls(ByVal Organization As Organization)

 txtName.Text = Organization.Name

 txtAddress.Text = Organization.AddressText

 txtZip.Text = Organization.ZipCode

 End Sub

 Private Function EditSession() As Organizations

 Dim Organizations As Organizations = RestoreList()

 Organizations(GridView1.SelectedIndex).BeginEdit()

 Return Organizations

 End Function

 Protected Sub txtName_TextChanged(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles txtName.TextChanged

 EditSession(GridView1.SelectedIndex).Name = txtName.Text

 End Sub

 Protected Sub txtAddress_TextChanged(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles txtAddress.TextChanged

 EditSession(GridView1.SelectedIndex).AddressText = txtAddress.Text

 End Sub

 Protected Sub txtZip_TextChanged(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles txtZip.TextChanged

 EditSession(GridView1.SelectedIndex).ZipCode = txtZip.Text

 End Sub

 Protected Sub btnSave_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles

 btnSave.Click

 RestoreList(GridView1.SelectedIndex).Update()

 GridView1.DataBind()

 End Sub

 Protected Sub btnCancel_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles btnCancel.Click

 Dim Organizations As Organizations = RestoreList()

 Organizations(GridView1.SelectedIndex).UpdateCancel()

 PopulateControls(Organizations(GridView1.SelectedIndex))

 End Sub

End Class

In the above code, "odsOrganization" is the name of the ObjectDataSource control

bound to the Organization class; GridView1 is the name of the GridView control

which is bound to odsOrganization.

This code assumes that the " RetainDataListState" property of the WebDataAssist

control is set to "True". Below is a summary of the purpose/function of each of

the code sections above:

mv.NET Solution Objects Developer Guide - WebForm Data Binding Support

Page 110

Method Name Description

GridView1_DataBound This routine handles the DataBound event of

the GridView control. It forces the TextBox

controls to be populated with data from the

first row in the grid.

GridView1_SelectedIndexChanged This routine handles the

SelectedIndexChanged event of the GridView

control. It forces the TextBox controls to be

populated with data from the currently

selected row in the grid.

RestoreList This routine returns an Organizations

instance by either restoring it from the

previously persisted state (using the

WebDataAssist.DataSourceStateInfo

property) or by extracting a previously

restored instance (using the WebDataAssist's

DataSource function).

The restore from state approach passes in

the GridView's current page position so that

the returned Organizations instance

matches that held by the ObjectDataSource.

PopulateControls Uses data from the currently selected

Organization instance to populate the values

of the various edit/display controls.

EditSession Prepares the current Organization instance

for editing.

xxx_TextChanged The TextChanged event handlers for the 3

TextBox controls being used.

btnSave_Click Saves any amendments to the currently

selected Organization instance and forces

the GridView data to be refreshed (by using

its DataBind method) to display any new

values.

btnCancel_Click Cancels any unsaved amendments to the

currently selected Organization instance and

forces repopulation of the TextBox controls.

mv.NET Solution Objects Developer Guide - Developing Silverlight Applications

Page 111

Developing Silverlight

Applications

This chapter describes how you can use your business objects layer to create rich-

client applications that run inside a Web browser using Microsoft's "Silverlight"

product.

Overview

Microsoft's Silverlight product is an environment (plug-in) that runs inside a Web

browser. Most of the popular browsers in use today are fully supported. The

Silverlight plug-in allows .NET managed code to execute within the sand-boxed

browser environment and supports XAML (WPF) rendering of the user interface.

This combination gives us just about everything we need to create applications

that have all the look and feel of functionally rich desktop applications but with

the added benefit of being able to run as a browser application.

As mentioned above, Silverlight supports (a cut down version of the full) WPF

specification and, as such, provides excellent data binding support.

mv.NET Solution Objects Developer Guide - User-based Property Security

Page 112

User-based Property

Security

This chapter describes the built-in security system provided by Solution Objects.

This security mechanism is designed to ease the task of programmatically

determining which data fields a user should be shown or allowed access to based

on their security rating.

Overview

It is a frequent requirement within applications to control the fields that a user

views or can edit within the interface of an application. This requirement is

invariably driven either in part or whole by their "security privilege level" - a

setting that the application usually needs to maintain as part of its feature set. To

ease the task of implementing such functionality, Solution Objects provides a

mechanism whereby the properties of each entity can be flagged with security

information. This information can be accessed by the developer at runtime to

determine, for example, which controls on a form should be hidden or disabled as

necessary.

Security information is held at the entity model version level, this allows security

profiling to evolve across different entity model versions. There are 2 main parts

to Solution Object's security mechanism:

1) The definition of a list of security groups

2) The association of these security groups to entity properties

mv.NET Solution Objects Developer Guide - User-based Property Security

Page 113

Defining Security Groups

The security groups that exist within a entity model version are defined within the

version details maintenance window, accessed by right-clicking the relevant

version node within the Data Manager's TreeView area and selecting the "Maintain

Version Details" menu option. On the resulting window, select the "Security

Groups" tab.

You are then able to add and remove entries from the security group list for this

version.

Associating Security Groups with Properties

The association of security groups with properties is done within the Data Access

Class maintenance window. Within this window, once you have selected the

"Datasource Specific" view, a "Security" tab will be available.

The first thing that you need to define is the style of security control for this entity

using the "Class property security style" ComboBox control. There are 3 options:

- "No security" - no security profiling will be implemented for this entity.

- "Same security for all properties" - you can define a single security profile for

this entity. This profile will then be applied to all properties within the entity.

- "Custom security per property" - you are able to create an separate security

profile for each property within the entity.

Each security profile allows you to specify which of the security groups of the

model version are allowed access to property/properties and, if access is allowed,

whether this is full (read/write) access or just read-only.

mv.NET Solution Objects Developer Guide - User-based Property Security

Page 114

Using Security Information at Run-time

The creation of security groups and profiles at design-time does not cause

anything to happen automatically at run-time within an application. It is the

responsibility of the developer to:

a) Specify the security group membership of a specific user

b) Implement any user interface/application ramifications of non-

membership of a group

However, Solution Objects does provide an easy to use static method to determine

whether a user has access (and at what level) to a specific property based on their

security group membership.

The first thing that you need to do at some point early in the execution of your

application is to construct a string array of security groups that the current user

belongs to. How you determine this is down to you to decide.

Each Business Access Class has a static method called "PropertySecurityAccessLevel"

which accepts 2 arguments, the first is the string array of security groups that the

user belongs to and the second is a (string value) property name. For example, if

we have a Business Access Class called "Organization" that has a "Name" property :

Private SecurityGroupMembership = New String() {"MANAGER"}

Dim accessLevel As PropertySecurityAccessLevelType =

Organization.PropertySecurityAccessLevel(SecurityGroupMembership,
Organization.MemberNameEquates.Property.Name)

Or, in C#:

string[] SecurityGroupMembership = new String[] { "MANAGER" };

PropertySecurityAccessLevelType accessLevel =

Organization.PropertySecurityAccessLevel(SecurityGroupMembership,

Organization.MemberNameEquates.PropertyName.Name);

From the above you can see that Solution Objects contains an enumeration called

"PropertySecurityAccessLevelType". This enumeration can be used to identity the

access level that a user has to a specific property, namely:

- None

- ReadOnly

- Full

You will also notice that the above code makes use of the property name equates

that are automatically generated for each Business Access Classes, in the above

example "Organization.MemberNameEquates.PropertyName.Name".

